Alcohol Sensor Based on Surface Plasmon Resonance of ZnO Nanoflowers/Au Structure

Alcohol detection plays a key role in food processing and monitoring. Therefore, we present a fast, high reproducibility and label-free characteristics alcohol photochemical sensor based on the surface plasmon resonance (SPR) effect. By growing ZnO nanoflowers on Au film, the SPR signal red-shifted...

Full description

Bibliographic Details
Main Authors: Haowen Xu, Yutong Song, Panpan Zhu, Wanli Zhao, Tongyu Liu, Qi Wang, Tianming Zhao
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/1/189
Description
Summary:Alcohol detection plays a key role in food processing and monitoring. Therefore, we present a fast, high reproducibility and label-free characteristics alcohol photochemical sensor based on the surface plasmon resonance (SPR) effect. By growing ZnO nanoflowers on Au film, the SPR signal red-shifted in the visible region as the alcohol concentration increased. More interestingly, the sensitivity improved to 127 nm/%, which is attributed to the ZnO nanoflowers/Au structure. The goodness of the linear fit was more than 0.99 at a range from 0 vol% to 95 vol% which ensures detection resolution. Finally, a practical application for distinguishing five kinds of alcoholic drinks has been demonstrated. The excellent sensing characteristics also indicate the potential of the device for applications in the direction of food processing and monitoring, and the simple structure fabrication and economic environmental protection make it more attractive.
ISSN:1996-1944