Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps

Remote sensing and land resource surveys have been used in recent decades for land use/land cover (LULC) mapping; however, keeping the developed LULC up-to-date and consistent with land survey statistics remains challenging. This study developed a practical and effective framework to automatically u...

Full description

Bibliographic Details
Main Authors: Zhenrong Du, Le Yu, Xiyu Li, Jiyao Zhao, Xin Chen, Yidi Xu, Peng Yang, Jianyu Yang, Dailiang Peng, Yueming Xue, Peng Gong
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:International Journal of Digital Earth
Subjects:
Online Access:http://dx.doi.org/10.1080/17538947.2023.2274422
_version_ 1797640955126349824
author Zhenrong Du
Le Yu
Xiyu Li
Jiyao Zhao
Xin Chen
Yidi Xu
Peng Yang
Jianyu Yang
Dailiang Peng
Yueming Xue
Peng Gong
author_facet Zhenrong Du
Le Yu
Xiyu Li
Jiyao Zhao
Xin Chen
Yidi Xu
Peng Yang
Jianyu Yang
Dailiang Peng
Yueming Xue
Peng Gong
author_sort Zhenrong Du
collection DOAJ
description Remote sensing and land resource surveys have been used in recent decades for land use/land cover (LULC) mapping; however, keeping the developed LULC up-to-date and consistent with land survey statistics remains challenging. This study developed a practical and effective framework to automatically update existing LULC products and bridge the gap between remote sensing classification results and land survey data. This study employed Landsat imagery time series, change detection algorithms, sample migration, and random forests to develop a framework for updating existing LULC products in China from 1980–2015 to 1980–2022. The updated LULC maps reflect the post-2015 LULC changes well and maintain continuity with the pre-2015 products. Additionally, a statistical space allocation method based on the minimum cross-entropy strategy was proposed to optimize the LULC maps, increasing the correlation coefficient (r) with China’s second and third national land survey statistics from 0.41–0.89 to 0.86–0.99. Thus, the framework and products developed in this study provide valuable tools for sustainable land use and policy planning.
first_indexed 2024-03-11T13:38:37Z
format Article
id doaj.art-abde08e3dbb343119a81cc7e2d363f21
institution Directory Open Access Journal
issn 1753-8947
1753-8955
language English
last_indexed 2024-03-11T13:38:37Z
publishDate 2023-12-01
publisher Taylor & Francis Group
record_format Article
series International Journal of Digital Earth
spelling doaj.art-abde08e3dbb343119a81cc7e2d363f212023-11-02T14:47:05ZengTaylor & Francis GroupInternational Journal of Digital Earth1753-89471753-89552023-12-011624428444510.1080/17538947.2023.22744222274422Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover mapsZhenrong Du0Le Yu1Xiyu Li2Jiyao Zhao3Xin Chen4Yidi Xu5Peng Yang6Jianyu Yang7Dailiang Peng8Yueming Xue9Peng Gong10Tsinghua UniversityTsinghua UniversityTsinghua UniversityTsinghua UniversityShanxi UniversityUniversite Paris-SaclayChinese Academy of Agricultural SciencesChina Agricultural UniversityChinese Academy of SciencesChina Institute of Geo-Environmental MonitoringMinistry of Education Ecological Field Station for East Asian Migratory BirdsRemote sensing and land resource surveys have been used in recent decades for land use/land cover (LULC) mapping; however, keeping the developed LULC up-to-date and consistent with land survey statistics remains challenging. This study developed a practical and effective framework to automatically update existing LULC products and bridge the gap between remote sensing classification results and land survey data. This study employed Landsat imagery time series, change detection algorithms, sample migration, and random forests to develop a framework for updating existing LULC products in China from 1980–2015 to 1980–2022. The updated LULC maps reflect the post-2015 LULC changes well and maintain continuity with the pre-2015 products. Additionally, a statistical space allocation method based on the minimum cross-entropy strategy was proposed to optimize the LULC maps, increasing the correlation coefficient (r) with China’s second and third national land survey statistics from 0.41–0.89 to 0.86–0.99. Thus, the framework and products developed in this study provide valuable tools for sustainable land use and policy planning.http://dx.doi.org/10.1080/17538947.2023.2274422land useland coverchange detectionland surveystatistical constraints
spellingShingle Zhenrong Du
Le Yu
Xiyu Li
Jiyao Zhao
Xin Chen
Yidi Xu
Peng Yang
Jianyu Yang
Dailiang Peng
Yueming Xue
Peng Gong
Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps
International Journal of Digital Earth
land use
land cover
change detection
land survey
statistical constraints
title Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps
title_full Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps
title_fullStr Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps
title_full_unstemmed Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps
title_short Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps
title_sort integrating remote sensing temporal trajectory and survey statistics to update land use land cover maps
topic land use
land cover
change detection
land survey
statistical constraints
url http://dx.doi.org/10.1080/17538947.2023.2274422
work_keys_str_mv AT zhenrongdu integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT leyu integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT xiyuli integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT jiyaozhao integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT xinchen integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT yidixu integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT pengyang integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT jianyuyang integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT dailiangpeng integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT yuemingxue integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps
AT penggong integratingremotesensingtemporaltrajectoryandsurveystatisticstoupdatelanduselandcovermaps