Summary: | (1) Background: Mobile movement analysis systems, for example, those based on Inertial Measurement Units (IMUs), enable digital real-time methods of collecting data in workplace ergonomics, but the relationship between observational method scores such as Rapid Upper Limb Assessment (RULA), upper-body posture, and their influence on musculoskeletal discomfort, has not yet been well investigated. This field study aimed to evaluate the relationship of these variables in two different target groups: production and office workers. (2) Methods: There were 64 subjects (44 men and 20 women) participating. Data collection was divided into two categories: (1) Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) (n = 64) and 3D stereophotogrammetric posture analysis (n = 58), and (2) Investigation of workload via IMU-based motion capture (MoCap) and the Borg CR-10 body map (n = 24). Correlation tests and regression analysis were performed using SPSS and MATLAB software to examine the relationship between the upper-body posture and RULA. Multivariate analysis of variance (MANOVA) was applied to examine group differences. (3) Results: The findings did not support the authors’ hypothesis that posture risk at work significantly correlates with static upper-body posture and musculoskeletal discomfort. Pelvic tilt had a weak but significant influence on RULA. The data revealed interesting trends in physical exertion, musculoskeletal discomfort, and differences between production and office workers. However, the statistical analysis did not support this. Such approaches have the potential to enhance the accuracy of assessment outcomes and, in turn, provide a stronger foundation for enhancing ergonomic conditions.
|