Edge metric dimension of some classes of circulant graphs

Let G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e...

Full description

Bibliographic Details
Main Authors: Ahsan Muhammad, Zahid Zohaib, Zafar Sohail
Format: Article
Language:English
Published: Sciendo 2020-12-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2020-0032
_version_ 1811272283877015552
author Ahsan Muhammad
Zahid Zohaib
Zafar Sohail
author_facet Ahsan Muhammad
Zahid Zohaib
Zafar Sohail
author_sort Ahsan Muhammad
collection DOAJ
description Let G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.
first_indexed 2024-04-12T22:37:37Z
format Article
id doaj.art-abfe1fe7c416489fabc2c6b57b186332
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-04-12T22:37:37Z
publishDate 2020-12-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-abfe1fe7c416489fabc2c6b57b1863322022-12-22T03:13:50ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352020-12-01283153710.2478/auom-2020-0032Edge metric dimension of some classes of circulant graphsAhsan Muhammad0Zahid Zohaib1Zafar Sohail2Department of Mathematics, University of Management and Technology (UMT), LahorePakistanDepartment of Mathematics, University of Management and Technology (UMT), LahorePakistanDepartment of Mathematics, University of Management and Technology (UMT), LahorePakistanLet G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.https://doi.org/10.2478/auom-2020-0032edge metric dimensionedge metric generatorbasisresolving setcirculant graphsprimary 05c12secondary
spellingShingle Ahsan Muhammad
Zahid Zohaib
Zafar Sohail
Edge metric dimension of some classes of circulant graphs
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
edge metric dimension
edge metric generator
basis
resolving set
circulant graphs
primary 05c12
secondary
title Edge metric dimension of some classes of circulant graphs
title_full Edge metric dimension of some classes of circulant graphs
title_fullStr Edge metric dimension of some classes of circulant graphs
title_full_unstemmed Edge metric dimension of some classes of circulant graphs
title_short Edge metric dimension of some classes of circulant graphs
title_sort edge metric dimension of some classes of circulant graphs
topic edge metric dimension
edge metric generator
basis
resolving set
circulant graphs
primary 05c12
secondary
url https://doi.org/10.2478/auom-2020-0032
work_keys_str_mv AT ahsanmuhammad edgemetricdimensionofsomeclassesofcirculantgraphs
AT zahidzohaib edgemetricdimensionofsomeclassesofcirculantgraphs
AT zafarsohail edgemetricdimensionofsomeclassesofcirculantgraphs