Snowmass2021 cosmic frontier white paper: Ultraheavy particle dark matter

We outline the unique opportunities and challenges in the search for "ultraheavy" dark matter candidates with masses between roughly 10 TeV and the Planck scale $m_{\rm pl} ≈ 10^{16}$ TeV. This mass range presents a wide and relatively unexplored dark matter parameter space, with a rich sp...

Full description

Bibliographic Details
Main Author: Daniel Carney, Nirmal Raj, Yang Bai, Joshua Berger, Carlos Blanco, Joseph Bramante, Christopher Cappiello, Maíra Dutra, Reza Ebadi, Kristi Engel, Edward Kolb, J. Patrick Harding, Jason Kumar, Gordan Krnjaic, Rafael F. Lang, Rebecca K. Leane, Benjamin V. Lehmann, Shengchao Li, Andrew J. Long, Gopolang Mohlabeng, Ibles Olcina, Elisa Pueschel, Nicholas L. Rodd, Carsten Rott, Dipan Sengupta, Bibhushan Shakya, Ronald L. Walsworth, Shawn Westerdale
Format: Article
Language:English
Published: SciPost 2023-11-01
Series:SciPost Physics Core
Online Access:https://scipost.org/SciPostPhysCore.6.4.075
Description
Summary:We outline the unique opportunities and challenges in the search for "ultraheavy" dark matter candidates with masses between roughly 10 TeV and the Planck scale $m_{\rm pl} ≈ 10^{16}$ TeV. This mass range presents a wide and relatively unexplored dark matter parameter space, with a rich space of possible models and cosmic histories. We emphasize that both current detectors and new, targeted search techniques, via both direct and indirect detection, are poised to contribute to searches for ultraheavy particle dark matter in the coming decade. We highlight the need for new developments in this space, including new analyses of current and imminent direct and indirect experiments targeting ultraheavy dark matter and development of new, ultra-sensitive detector technologies like next-generation liquid noble detectors, neutrino experiments, and specialized quantum sensing techniques.
ISSN:2666-9366