Recipes for when physics fails: recovering robust learning of physics informed neural networks
Physics-informed neural networks (PINNs) have been shown to be effective in solving partial differential equations by capturing the physics induced constraints as a part of the training loss function. This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dyna...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | Machine Learning: Science and Technology |
Subjects: | |
Online Access: | https://doi.org/10.1088/2632-2153/acb416 |