Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane
Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus–sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by 15N metabolic labeling of bacteria, roo...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The American Phytopathological Society
2011-05-01
|
Series: | Molecular Plant-Microbe Interactions |
Online Access: | https://apsjournals.apsnet.org/doi/10.1094/MPMI-08-10-0178 |
_version_ | 1818647243184406528 |
---|---|
author | Letícia M. S. Lery Adriana S. Hemerly Eduardo M. Nogueira Wanda M. A. von Krüger Paulo M. Bisch |
author_facet | Letícia M. S. Lery Adriana S. Hemerly Eduardo M. Nogueira Wanda M. A. von Krüger Paulo M. Bisch |
author_sort | Letícia M. S. Lery |
collection | DOAJ |
description | Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus–sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by 15N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant–bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium–plant interaction, which generated insights into early signaling of the G. diazotrophicus–sugarcane interaction. |
first_indexed | 2024-12-17T00:59:26Z |
format | Article |
id | doaj.art-ac322f6f722d444cae8ed556e1dd4561 |
institution | Directory Open Access Journal |
issn | 0894-0282 1943-7706 |
language | English |
last_indexed | 2024-12-17T00:59:26Z |
publishDate | 2011-05-01 |
publisher | The American Phytopathological Society |
record_format | Article |
series | Molecular Plant-Microbe Interactions |
spelling | doaj.art-ac322f6f722d444cae8ed556e1dd45612022-12-21T22:09:32ZengThe American Phytopathological SocietyMolecular Plant-Microbe Interactions0894-02821943-77062011-05-0124556257610.1094/MPMI-08-10-0178Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and SugarcaneLetícia M. S. LeryAdriana S. HemerlyEduardo M. NogueiraWanda M. A. von KrügerPaulo M. BischGluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus–sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by 15N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant–bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium–plant interaction, which generated insights into early signaling of the G. diazotrophicus–sugarcane interaction.https://apsjournals.apsnet.org/doi/10.1094/MPMI-08-10-0178 |
spellingShingle | Letícia M. S. Lery Adriana S. Hemerly Eduardo M. Nogueira Wanda M. A. von Krüger Paulo M. Bisch Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane Molecular Plant-Microbe Interactions |
title | Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane |
title_full | Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane |
title_fullStr | Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane |
title_full_unstemmed | Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane |
title_short | Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane |
title_sort | quantitative proteomic analysis of the interaction between the endophytic plant growth promoting bacterium gluconacetobacter diazotrophicus and sugarcane |
url | https://apsjournals.apsnet.org/doi/10.1094/MPMI-08-10-0178 |
work_keys_str_mv | AT leticiamslery quantitativeproteomicanalysisoftheinteractionbetweentheendophyticplantgrowthpromotingbacteriumgluconacetobacterdiazotrophicusandsugarcane AT adrianashemerly quantitativeproteomicanalysisoftheinteractionbetweentheendophyticplantgrowthpromotingbacteriumgluconacetobacterdiazotrophicusandsugarcane AT eduardomnogueira quantitativeproteomicanalysisoftheinteractionbetweentheendophyticplantgrowthpromotingbacteriumgluconacetobacterdiazotrophicusandsugarcane AT wandamavonkruger quantitativeproteomicanalysisoftheinteractionbetweentheendophyticplantgrowthpromotingbacteriumgluconacetobacterdiazotrophicusandsugarcane AT paulombisch quantitativeproteomicanalysisoftheinteractionbetweentheendophyticplantgrowthpromotingbacteriumgluconacetobacterdiazotrophicusandsugarcane |