Existence results for some nonlinear problems with $\phi$-Laplacian

Using the barrier strip argument, we obtain the existence of solutions for the nonlinear boundary value problem $$ (\phi(u'))'=f(t,u,u'),\qquad u(0)=A,\qquad u'(1)=B, $$ where $\phi$ is an increasing homeomorphism.

Bibliographic Details
Main Authors: Ruyun Ma, Lu Zhang, Ruikuan Liu
Format: Article
Language:English
Published: University of Szeged 2015-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3356
_version_ 1827951305723740160
author Ruyun Ma
Lu Zhang
Ruikuan Liu
author_facet Ruyun Ma
Lu Zhang
Ruikuan Liu
author_sort Ruyun Ma
collection DOAJ
description Using the barrier strip argument, we obtain the existence of solutions for the nonlinear boundary value problem $$ (\phi(u'))'=f(t,u,u'),\qquad u(0)=A,\qquad u'(1)=B, $$ where $\phi$ is an increasing homeomorphism.
first_indexed 2024-04-09T13:39:44Z
format Article
id doaj.art-ac49c26e57d44c90af08318faf3bd5e4
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:44Z
publishDate 2015-05-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-ac49c26e57d44c90af08318faf3bd5e42023-05-09T07:53:04ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752015-05-012015221710.14232/ejqtde.2015.1.223356Existence results for some nonlinear problems with $\phi$-LaplacianRuyun Ma0Lu Zhang1Ruikuan Liu2Department of Mathematics, Northwest Normal University, Lanzhou, P R ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, P R ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, P R ChinaUsing the barrier strip argument, we obtain the existence of solutions for the nonlinear boundary value problem $$ (\phi(u'))'=f(t,u,u'),\qquad u(0)=A,\qquad u'(1)=B, $$ where $\phi$ is an increasing homeomorphism.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3356barrier strip$\phi$-laplaciantopological transversality theoremexistence
spellingShingle Ruyun Ma
Lu Zhang
Ruikuan Liu
Existence results for some nonlinear problems with $\phi$-Laplacian
Electronic Journal of Qualitative Theory of Differential Equations
barrier strip
$\phi$-laplacian
topological transversality theorem
existence
title Existence results for some nonlinear problems with $\phi$-Laplacian
title_full Existence results for some nonlinear problems with $\phi$-Laplacian
title_fullStr Existence results for some nonlinear problems with $\phi$-Laplacian
title_full_unstemmed Existence results for some nonlinear problems with $\phi$-Laplacian
title_short Existence results for some nonlinear problems with $\phi$-Laplacian
title_sort existence results for some nonlinear problems with phi laplacian
topic barrier strip
$\phi$-laplacian
topological transversality theorem
existence
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3356
work_keys_str_mv AT ruyunma existenceresultsforsomenonlinearproblemswithphilaplacian
AT luzhang existenceresultsforsomenonlinearproblemswithphilaplacian
AT ruikuanliu existenceresultsforsomenonlinearproblemswithphilaplacian