Damped Newton Stochastic Gradient Descent Method for Neural Networks Training
First-order methods such as stochastic gradient descent (SGD) have recently become popular optimization methods to train deep neural networks (DNNs) for good generalization; however, they need a long training time. Second-order methods which can lower the training time are scarcely used on account o...
Κύριοι συγγραφείς: | Jingcheng Zhou, Wei Wei, Ruizhi Zhang, Zhiming Zheng |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
MDPI AG
2021-06-01
|
Σειρά: | Mathematics |
Θέματα: | |
Διαθέσιμο Online: | https://www.mdpi.com/2227-7390/9/13/1533 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
ανά: Ruijuan Chen, κ.ά.
Έκδοση: (2022-11-01) -
The Improved Stochastic Fractional Order Gradient Descent Algorithm
ανά: Yang Yang, κ.ά.
Έκδοση: (2023-08-01) -
Recent Advances in Stochastic Gradient Descent in Deep Learning
ανά: Yingjie Tian, κ.ά.
Έκδοση: (2023-01-01) -
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
ανά: Rita Fioresi, κ.ά.
Έκδοση: (2020-01-01) -
Stochastic gradient descent with random label noises: doubly stochastic models and inference stabilizer
ανά: Haoyi Xiong, κ.ά.
Έκδοση: (2024-01-01)