Damped Newton Stochastic Gradient Descent Method for Neural Networks Training
First-order methods such as stochastic gradient descent (SGD) have recently become popular optimization methods to train deep neural networks (DNNs) for good generalization; however, they need a long training time. Second-order methods which can lower the training time are scarcely used on account o...
Principais autores: | Jingcheng Zhou, Wei Wei, Ruizhi Zhang, Zhiming Zheng |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
MDPI AG
2021-06-01
|
coleção: | Mathematics |
Assuntos: | |
Acesso em linha: | https://www.mdpi.com/2227-7390/9/13/1533 |
Registros relacionados
-
Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
por: Ruijuan Chen, et al.
Publicado em: (2022-11-01) -
The Improved Stochastic Fractional Order Gradient Descent Algorithm
por: Yang Yang, et al.
Publicado em: (2023-08-01) -
Recent Advances in Stochastic Gradient Descent in Deep Learning
por: Yingjie Tian, et al.
Publicado em: (2023-01-01) -
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
por: Rita Fioresi, et al.
Publicado em: (2020-01-01) -
Stochastic gradient descent with random label noises: doubly stochastic models and inference stabilizer
por: Haoyi Xiong, et al.
Publicado em: (2024-01-01)