Damped Newton Stochastic Gradient Descent Method for Neural Networks Training
First-order methods such as stochastic gradient descent (SGD) have recently become popular optimization methods to train deep neural networks (DNNs) for good generalization; however, they need a long training time. Second-order methods which can lower the training time are scarcely used on account o...
Huvudupphovsmän: | Jingcheng Zhou, Wei Wei, Ruizhi Zhang, Zhiming Zheng |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
MDPI AG
2021-06-01
|
Serie: | Mathematics |
Ämnen: | |
Länkar: | https://www.mdpi.com/2227-7390/9/13/1533 |
Liknande verk
-
Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
av: Ruijuan Chen, et al.
Publicerad: (2022-11-01) -
The Improved Stochastic Fractional Order Gradient Descent Algorithm
av: Yang Yang, et al.
Publicerad: (2023-08-01) -
Recent Advances in Stochastic Gradient Descent in Deep Learning
av: Yingjie Tian, et al.
Publicerad: (2023-01-01) -
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
av: Rita Fioresi, et al.
Publicerad: (2020-01-01) -
Stochastic gradient descent with random label noises: doubly stochastic models and inference stabilizer
av: Haoyi Xiong, et al.
Publicerad: (2024-01-01)