Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions

The modified sigmoidal bacteria growth functions (the modified Gompertz, logistic, and Richards) were used to evaluate the methane production process kinetics of agricultural wastes. The mesophilic anaerobic co-digestion experiments were conducted with various agricultural wastes as feedstocks, incl...

Full description

Bibliographic Details
Main Authors: Huayong Zhang, Di An, Yudong Cao, Yonglan Tian, Jinxian He
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/2/258
Description
Summary:The modified sigmoidal bacteria growth functions (the modified Gompertz, logistic, and Richards) were used to evaluate the methane production process kinetics of agricultural wastes. The mesophilic anaerobic co-digestion experiments were conducted with various agricultural wastes as feedstocks, including cow manure, corn straw, grape leaves, vines, wine residue, strawberry leaves, and tomato leaves. The results showed that anaerobic co-digestion of cow manure and other agricultural wastes increased the methane yields while it prolonged the lag phase time. Compared with the modified Gompertz and logistic models, the modified Richards model obtained higher correlation coefficients and was able to fit experimental data better. The results of this study were expected to determine a suitable model to simulate and study the kinetic process of anaerobic co-digestion with mixed agricultural wastes as feedstocks.
ISSN:1996-1073