Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)

Evapotranspiration is one of the important factors in water resources consumption in the agriculture part. Therefore, presenting a method which gives suitable and accurate prediction of reference evapotranspiration can help to take optimum decision for water resource programing. In this research, ti...

Full description

Bibliographic Details
Main Authors: Nasrin Azad Talatapeh, Javad Behmanesh, Mojtaba Moktaseri, Vahid Reza Verdi Nejhaz
Format: Article
Language:fas
Published: Shahid Chamran University of Ahvaz 2016-01-01
Series:علوم و مهندسی آبیاری
Subjects:
Online Access:http://jise.scu.ac.ir/article_11794_584fef9d6296525262ee87b7a125f264.pdf
_version_ 1818249510111936512
author Nasrin Azad Talatapeh
Javad Behmanesh
Mojtaba Moktaseri
Vahid Reza Verdi Nejhaz
author_facet Nasrin Azad Talatapeh
Javad Behmanesh
Mojtaba Moktaseri
Vahid Reza Verdi Nejhaz
author_sort Nasrin Azad Talatapeh
collection DOAJ
description Evapotranspiration is one of the important factors in water resources consumption in the agriculture part. Therefore, presenting a method which gives suitable and accurate prediction of reference evapotranspiration can help to take optimum decision for water resource programing. In this research, time series and artificial neural networks methods were compared each other in order to predict the monthly reference evapotranspiration in Urmia synoptic station. To achieve this goal, at the first step, the best time series model between AR and ARMA models and the best artificial neural networks model between radial basis function (RBF) and multilayer perceptron (MLP) neural networks were selected. In the second step, the two models chosen were compared each other. In the mentioned artificial neural networks, the deferent monthly lags of reference evapotranspiration were used as network input. In this process, the monthly reference evapotranspirations were computed from 1971 to 2010 using FAO Penman-Monteith method. The mentioned dates from 1971 to 2005 were used to select the best time series model and the best structure of networks and the dates from 2006 to 2010 were utilized to compare the methods used. The results showed that the AR(11) model has the best performance among other time series models and the RBF model has the lower error than the MLP model. The comparison of the best time series model (AR(11) model) with the best artificial neural networks model (RBF model) showed that the RBF model could predict the reference evapotranspiration by the lowest error from 1971 to 2010 period. The root mean square error in AR(11) and RBF models was obtained 1.85 and 0.999 mm/month respectively.
first_indexed 2024-12-12T15:37:38Z
format Article
id doaj.art-ac70911cc8be47bc9f5b374f9eaecb3e
institution Directory Open Access Journal
issn 2588-5952
2588-5960
language fas
last_indexed 2024-12-12T15:37:38Z
publishDate 2016-01-01
publisher Shahid Chamran University of Ahvaz
record_format Article
series علوم و مهندسی آبیاری
spelling doaj.art-ac70911cc8be47bc9f5b374f9eaecb3e2022-12-22T00:19:58ZfasShahid Chamran University of Ahvazعلوم و مهندسی آبیاری2588-59522588-59602016-01-01384758510.22055/jise.2016.1179411794Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)Nasrin Azad Talatapeh0Javad Behmanesh1Mojtaba Moktaseri2Vahid Reza Verdi Nejhaz3دانشجوی کارشناسی ارشد آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه ارومیهدانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیهدانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیهاستادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیهEvapotranspiration is one of the important factors in water resources consumption in the agriculture part. Therefore, presenting a method which gives suitable and accurate prediction of reference evapotranspiration can help to take optimum decision for water resource programing. In this research, time series and artificial neural networks methods were compared each other in order to predict the monthly reference evapotranspiration in Urmia synoptic station. To achieve this goal, at the first step, the best time series model between AR and ARMA models and the best artificial neural networks model between radial basis function (RBF) and multilayer perceptron (MLP) neural networks were selected. In the second step, the two models chosen were compared each other. In the mentioned artificial neural networks, the deferent monthly lags of reference evapotranspiration were used as network input. In this process, the monthly reference evapotranspirations were computed from 1971 to 2010 using FAO Penman-Monteith method. The mentioned dates from 1971 to 2005 were used to select the best time series model and the best structure of networks and the dates from 2006 to 2010 were utilized to compare the methods used. The results showed that the AR(11) model has the best performance among other time series models and the RBF model has the lower error than the MLP model. The comparison of the best time series model (AR(11) model) with the best artificial neural networks model (RBF model) showed that the RBF model could predict the reference evapotranspiration by the lowest error from 1971 to 2010 period. The root mean square error in AR(11) and RBF models was obtained 1.85 and 0.999 mm/month respectively.http://jise.scu.ac.ir/article_11794_584fef9d6296525262ee87b7a125f264.pdfreference evapotranspirationradial basis function networksmultilayer perceptron neural networkstime series models
spellingShingle Nasrin Azad Talatapeh
Javad Behmanesh
Mojtaba Moktaseri
Vahid Reza Verdi Nejhaz
Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)
علوم و مهندسی آبیاری
reference evapotranspiration
radial basis function networks
multilayer perceptron neural networks
time series models
title Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)
title_full Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)
title_fullStr Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)
title_full_unstemmed Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)
title_short Comparison of Time Series Methods and Artificial Neural Networks In Reference Evapotranspiration Prediction (Case Study: Urmia)
title_sort comparison of time series methods and artificial neural networks in reference evapotranspiration prediction case study urmia
topic reference evapotranspiration
radial basis function networks
multilayer perceptron neural networks
time series models
url http://jise.scu.ac.ir/article_11794_584fef9d6296525262ee87b7a125f264.pdf
work_keys_str_mv AT nasrinazadtalatapeh comparisonoftimeseriesmethodsandartificialneuralnetworksinreferenceevapotranspirationpredictioncasestudyurmia
AT javadbehmanesh comparisonoftimeseriesmethodsandartificialneuralnetworksinreferenceevapotranspirationpredictioncasestudyurmia
AT mojtabamoktaseri comparisonoftimeseriesmethodsandartificialneuralnetworksinreferenceevapotranspirationpredictioncasestudyurmia
AT vahidrezaverdinejhaz comparisonoftimeseriesmethodsandartificialneuralnetworksinreferenceevapotranspirationpredictioncasestudyurmia