Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data

Land cover area estimates can be derived via design-based approaches using a probability (random) reference sample. The collection of samples is usually costly and requires an effective sampling design. Earth-Observation-based mapping approaches do not have this requirement but can be biased in prov...

Full description

Bibliographic Details
Main Authors: Luca Kleinewillinghöfer, Pontus Olofsson, Edzer Pebesma, Hanna Meyer, Oliver Buck, Carsten Haub, Beatrice Eiselt
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/19/4903
_version_ 1797477130060169216
author Luca Kleinewillinghöfer
Pontus Olofsson
Edzer Pebesma
Hanna Meyer
Oliver Buck
Carsten Haub
Beatrice Eiselt
author_facet Luca Kleinewillinghöfer
Pontus Olofsson
Edzer Pebesma
Hanna Meyer
Oliver Buck
Carsten Haub
Beatrice Eiselt
author_sort Luca Kleinewillinghöfer
collection DOAJ
description Land cover area estimates can be derived via design-based approaches using a probability (random) reference sample. The collection of samples is usually costly and requires an effective sampling design. Earth-Observation-based mapping approaches do not have this requirement but can be biased in providing area estimates. Combining reference samples with remote sensing products can reduce sampling efforts and provide a more effective method to estimate land cover. The Copernicus High-Resolution Layer (HRL) provides remote-sensing-based data across Europe to support area estimation. Different methods are tested to estimate areas of imperviousness in four selected countries in Europe to demonstrate the use and shortcomings of existing reference information from the LUCAS survey program and the HRL Imperviousness products from 2015 and 2018.
first_indexed 2024-03-09T21:13:15Z
format Article
id doaj.art-ac70c24855334adcb5f30104f4c741b6
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T21:13:15Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-ac70c24855334adcb5f30104f4c741b62023-11-23T21:40:36ZengMDPI AGRemote Sensing2072-42922022-09-011419490310.3390/rs14194903Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference DataLuca Kleinewillinghöfer0Pontus Olofsson1Edzer Pebesma2Hanna Meyer3Oliver Buck4Carsten Haub5Beatrice Eiselt6EFTAS Fernerkundung Technologietransfer GmbH, Oststraße 2, 48145 Münster, GermanyDepartment of Earth and Environment, Boston University Arts & Sciences, 685 Commonwealth Avenue, Boston, MA 02215, USAInstitute for Geoinformatics, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 2, 48149 Münster, GermanyInstitute of Landscape Ecology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 2, 48149 Münster, GermanyEFTAS Fernerkundung Technologietransfer GmbH, Oststraße 2, 48145 Münster, GermanyEFTAS Fernerkundung Technologietransfer GmbH, Oststraße 2, 48145 Münster, GermanyEuropean Commission, Eurostat, Rue Alphonse Weicker 5 L, 2721 Kirchberg, LuxembourgLand cover area estimates can be derived via design-based approaches using a probability (random) reference sample. The collection of samples is usually costly and requires an effective sampling design. Earth-Observation-based mapping approaches do not have this requirement but can be biased in providing area estimates. Combining reference samples with remote sensing products can reduce sampling efforts and provide a more effective method to estimate land cover. The Copernicus High-Resolution Layer (HRL) provides remote-sensing-based data across Europe to support area estimation. Different methods are tested to estimate areas of imperviousness in four selected countries in Europe to demonstrate the use and shortcomings of existing reference information from the LUCAS survey program and the HRL Imperviousness products from 2015 and 2018.https://www.mdpi.com/2072-4292/14/19/4903area estimationCopernicusLUCASregression estimator
spellingShingle Luca Kleinewillinghöfer
Pontus Olofsson
Edzer Pebesma
Hanna Meyer
Oliver Buck
Carsten Haub
Beatrice Eiselt
Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data
Remote Sensing
area estimation
Copernicus
LUCAS
regression estimator
title Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data
title_full Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data
title_fullStr Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data
title_full_unstemmed Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data
title_short Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data
title_sort unbiased area estimation using copernicus high resolution layers and reference data
topic area estimation
Copernicus
LUCAS
regression estimator
url https://www.mdpi.com/2072-4292/14/19/4903
work_keys_str_mv AT lucakleinewillinghofer unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata
AT pontusolofsson unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata
AT edzerpebesma unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata
AT hannameyer unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata
AT oliverbuck unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata
AT carstenhaub unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata
AT beatriceeiselt unbiasedareaestimationusingcopernicushighresolutionlayersandreferencedata