Adaptive Laboratory Evolution of Microorganisms: Methodology and Application for Bioproduction

Adaptive laboratory evolution (ALE) is a useful experimental methodology for fundamental scientific research and industrial applications to create microbial cell factories. By using ALE, cells are adapted to the environment that researchers set based on their objectives through the serial transfer o...

Full description

Bibliographic Details
Main Authors: Takashi Hirasawa, Tomoya Maeda
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/11/1/92
Description
Summary:Adaptive laboratory evolution (ALE) is a useful experimental methodology for fundamental scientific research and industrial applications to create microbial cell factories. By using ALE, cells are adapted to the environment that researchers set based on their objectives through the serial transfer of cell populations in batch cultivations or continuous cultures and the fitness of the cells (i.e., cell growth) under such an environment increases. Then, omics analyses of the evolved mutants, including genome sequencing, transcriptome, proteome and metabolome analyses, are performed. It is expected that researchers can understand the evolutionary adaptation processes, and for industrial applications, researchers can create useful microorganisms that exhibit increased carbon source availability, stress tolerance, and production of target compounds based on omics analysis data. In this review article, the methodologies for ALE in microorganisms are introduced. Moreover, the application of ALE for the creation of useful microorganisms as cell factories has also been introduced.
ISSN:2076-2607