T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B

Abstract This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charge...

Full description

Bibliographic Details
Main Authors: Agustin Garcia-Caballero, Fang-Xiong Zhang, Victoria Hodgkinson, Junting Huang, Lina Chen, Ivana A. Souza, Stuart Cain, Jennifer Kass, Sascha Alles, Terrance P. Snutch, Gerald W. Zamponi
Format: Article
Language:English
Published: BMC 2018-05-01
Series:Molecular Brain
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13041-018-0368-5
Description
Summary:Abstract This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/β) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/β) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.
ISSN:1756-6606