Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review

Focal cortical dysplasia (FCD) is a congenital brain malformation that is closely associated with epilepsy. Early and accurate diagnosis is essential for effectively treating and managing FCD. Magnetic resonance imaging (MRI)—one of the most commonly used non-invasive neuroimaging methods for evalua...

Full description

Bibliographic Details
Main Authors: David Jiménez-Murillo, Andrés Eduardo Castro-Ospina, Leonardo Duque-Muñoz, Juan David Martínez-Vargas, Jazmín Ximena Suárez-Revelo, Jorge Mario Vélez-Arango, Maria de la Iglesia-Vayá
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/16/7072
_version_ 1797583294818156544
author David Jiménez-Murillo
Andrés Eduardo Castro-Ospina
Leonardo Duque-Muñoz
Juan David Martínez-Vargas
Jazmín Ximena Suárez-Revelo
Jorge Mario Vélez-Arango
Maria de la Iglesia-Vayá
author_facet David Jiménez-Murillo
Andrés Eduardo Castro-Ospina
Leonardo Duque-Muñoz
Juan David Martínez-Vargas
Jazmín Ximena Suárez-Revelo
Jorge Mario Vélez-Arango
Maria de la Iglesia-Vayá
author_sort David Jiménez-Murillo
collection DOAJ
description Focal cortical dysplasia (FCD) is a congenital brain malformation that is closely associated with epilepsy. Early and accurate diagnosis is essential for effectively treating and managing FCD. Magnetic resonance imaging (MRI)—one of the most commonly used non-invasive neuroimaging methods for evaluating the structure of the brain—is often implemented along with automatic methods to diagnose FCD. In this review, we define three categories for FCD identification based on MRI: visual, semi-automatic, and fully automatic methods. By conducting a systematic review following the PRISMA statement, we identified 65 relevant papers that have contributed to our understanding of automatic FCD identification techniques. The results of this review present a comprehensive overview of the current state-of-the-art in the field of automatic FCD identification and highlight the progress made and challenges ahead in developing reliable, efficient methods for automatic FCD diagnosis using MRI images. Future developments in this area will most likely lead to the integration of these automatic identification tools into medical image-viewing software, providing neurologists and radiologists with enhanced diagnostic capabilities. Moreover, new MRI sequences and higher-field-strength scanners will offer improved resolution and anatomical detail for precise FCD characterization. This review summarizes the current state of automatic FCD identification, thereby contributing to a deeper understanding and the advancement of FCD diagnosis and management.
first_indexed 2024-03-10T23:36:53Z
format Article
id doaj.art-ac87e4c02dbb453cb4b540216bb548fc
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T23:36:53Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-ac87e4c02dbb453cb4b540216bb548fc2023-11-19T02:56:23ZengMDPI AGSensors1424-82202023-08-012316707210.3390/s23167072Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic ReviewDavid Jiménez-Murillo0Andrés Eduardo Castro-Ospina1Leonardo Duque-Muñoz2Juan David Martínez-Vargas3Jazmín Ximena Suárez-Revelo4Jorge Mario Vélez-Arango5Maria de la Iglesia-Vayá6Grupo de investigación Máquinas Inteligentes y Reconocimiento de Patrones, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaGrupo de investigación Máquinas Inteligentes y Reconocimiento de Patrones, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaGrupo de investigación Máquinas Inteligentes y Reconocimiento de Patrones, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaGIDITIC, Universidad EAFIT, Medellín 050022, ColombiaGrupo de Investigación en Imágenes Médicas SURA, Ayudas Diagnósticas SURA, Carrera 48 # 26-50, Piso 2, Medellín 050021, ColombiaGrupo de Investigación en Imágenes Médicas SURA, Ayudas Diagnósticas SURA, Carrera 48 # 26-50, Piso 2, Medellín 050021, ColombiaBiomedical Imaging Unit FISABIO-CIPF, Foundation for the Promotion of the Research in Healthcare and Biomedicine (FISABIO), Avda. de Catalunya, 21, 46020 Valencia, SpainFocal cortical dysplasia (FCD) is a congenital brain malformation that is closely associated with epilepsy. Early and accurate diagnosis is essential for effectively treating and managing FCD. Magnetic resonance imaging (MRI)—one of the most commonly used non-invasive neuroimaging methods for evaluating the structure of the brain—is often implemented along with automatic methods to diagnose FCD. In this review, we define three categories for FCD identification based on MRI: visual, semi-automatic, and fully automatic methods. By conducting a systematic review following the PRISMA statement, we identified 65 relevant papers that have contributed to our understanding of automatic FCD identification techniques. The results of this review present a comprehensive overview of the current state-of-the-art in the field of automatic FCD identification and highlight the progress made and challenges ahead in developing reliable, efficient methods for automatic FCD diagnosis using MRI images. Future developments in this area will most likely lead to the integration of these automatic identification tools into medical image-viewing software, providing neurologists and radiologists with enhanced diagnostic capabilities. Moreover, new MRI sequences and higher-field-strength scanners will offer improved resolution and anatomical detail for precise FCD characterization. This review summarizes the current state of automatic FCD identification, thereby contributing to a deeper understanding and the advancement of FCD diagnosis and management.https://www.mdpi.com/1424-8220/23/16/7072deep learningfocal cortical dysplasiaimage processingmachine learningmagnetic resonance imaging
spellingShingle David Jiménez-Murillo
Andrés Eduardo Castro-Ospina
Leonardo Duque-Muñoz
Juan David Martínez-Vargas
Jazmín Ximena Suárez-Revelo
Jorge Mario Vélez-Arango
Maria de la Iglesia-Vayá
Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review
Sensors
deep learning
focal cortical dysplasia
image processing
machine learning
magnetic resonance imaging
title Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review
title_full Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review
title_fullStr Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review
title_full_unstemmed Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review
title_short Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review
title_sort automatic detection of focal cortical dysplasia using mri a systematic review
topic deep learning
focal cortical dysplasia
image processing
machine learning
magnetic resonance imaging
url https://www.mdpi.com/1424-8220/23/16/7072
work_keys_str_mv AT davidjimenezmurillo automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview
AT andreseduardocastroospina automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview
AT leonardoduquemunoz automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview
AT juandavidmartinezvargas automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview
AT jazminximenasuarezrevelo automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview
AT jorgemariovelezarango automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview
AT mariadelaiglesiavaya automaticdetectionoffocalcorticaldysplasiausingmriasystematicreview