A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method

This article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo fractional-order operator. We prove the results of the solution’s existence and uniqueness by using the Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic reproduct...

Full description

Bibliographic Details
Main Authors: Ihtisham Ul Haq, Mehmet Yavuz, Nigar Ali, Ali Akgül
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematical and Computational Applications
Subjects:
Online Access:https://www.mdpi.com/2297-8747/27/5/82
_version_ 1797471671018323968
author Ihtisham Ul Haq
Mehmet Yavuz
Nigar Ali
Ali Akgül
author_facet Ihtisham Ul Haq
Mehmet Yavuz
Nigar Ali
Ali Akgül
author_sort Ihtisham Ul Haq
collection DOAJ
description This article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo fractional-order operator. We prove the results of the solution’s existence and uniqueness by using the Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic reproduction number. We analyze the model’s endemic and disease-free equilibrium points for local and global stability. Furthermore, we find approximate solutions for the non-linear fractional model using the Modified Euler Method (MEM). To support analytical findings, numerical simulations are carried out.
first_indexed 2024-03-09T19:52:26Z
format Article
id doaj.art-ac8990c76cbc4054997f7672fe24a814
institution Directory Open Access Journal
issn 1300-686X
2297-8747
language English
last_indexed 2024-03-09T19:52:26Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematical and Computational Applications
spelling doaj.art-ac8990c76cbc4054997f7672fe24a8142023-11-24T01:08:50ZengMDPI AGMathematical and Computational Applications1300-686X2297-87472022-09-012758210.3390/mca27050082A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler MethodIhtisham Ul Haq0Mehmet Yavuz1Nigar Ali2Ali Akgül3Department of Mathematics, University of Malakand, Chakdara 18000, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, Konya 42090, TürkiyeDepartment of Mathematics, University of Malakand, Chakdara 18000, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics, Art and Science Faculty, Siirt University, Siirt 56100, TürkiyeThis article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo fractional-order operator. We prove the results of the solution’s existence and uniqueness by using the Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic reproduction number. We analyze the model’s endemic and disease-free equilibrium points for local and global stability. Furthermore, we find approximate solutions for the non-linear fractional model using the Modified Euler Method (MEM). To support analytical findings, numerical simulations are carried out.https://www.mdpi.com/2297-8747/27/5/82SARS-CoV-2Banach mapping contraction principlelocal stabilityglobal stabilityModified Euler Method
spellingShingle Ihtisham Ul Haq
Mehmet Yavuz
Nigar Ali
Ali Akgül
A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
Mathematical and Computational Applications
SARS-CoV-2
Banach mapping contraction principle
local stability
global stability
Modified Euler Method
title A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
title_full A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
title_fullStr A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
title_full_unstemmed A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
title_short A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
title_sort sars cov 2 fractional order mathematical model via the modified euler method
topic SARS-CoV-2
Banach mapping contraction principle
local stability
global stability
Modified Euler Method
url https://www.mdpi.com/2297-8747/27/5/82
work_keys_str_mv AT ihtishamulhaq asarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT mehmetyavuz asarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT nigarali asarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT aliakgul asarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT ihtishamulhaq sarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT mehmetyavuz sarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT nigarali sarscov2fractionalordermathematicalmodelviathemodifiedeulermethod
AT aliakgul sarscov2fractionalordermathematicalmodelviathemodifiedeulermethod