Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry
Connes' noncommutative Riemannian distance formula is constructed in two steps, the first one being the construction of a path-independent geometrical functional using a global constraint on continuous functions. This paper generalizes this first step to Lorentzian geometry. We show that, in a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2010-08-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2010.064 |
Summary: | Connes' noncommutative Riemannian distance formula is constructed in two steps, the first one being the construction of a path-independent geometrical functional using a global constraint on continuous functions. This paper generalizes this first step to Lorentzian geometry. We show that, in a globally hyperbolic spacetime, a single global timelike eikonal condition is sufficient to construct a path-independent Lorentzian distance function. |
---|---|
ISSN: | 1815-0659 |