Summary: | A well-known result of Posner’s second theorem states that if the commutator of each element in a prime ring and its image under a nonzero derivation are central, then the ring is commutative. In the present paper, we extended this bluestocking theorem to an arbitrary ring with involution involving prime ideals. Further, apart from proving several other interesting and exciting results, we established the ∗-version of Vukman’s theorem. Precisely, we describe the structure of quotient ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">A</mi><mo>/</mo><mi mathvariant="fraktur">L</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> is an arbitrary ring and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">L</mi></semantics></math></inline-formula> is a prime ideal of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula>. Further, by taking advantage of the ∗-version of Vukman’s theorem, we show that if a 2-torsion free semiprime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> with involution admits a nonzero ∗-centralizing derivation, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> contains a nonzero central ideal. This result is in the spirit of the classical result due to Bell and Martindale (Theorem 3). As the applications, we extended and unified several classical theorems. Finally, we conclude our paper with a direction for further research.
|