Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications

A well-known result of Posner’s second theorem states that if the commutator of each element in a prime ring and its image under a nonzero derivation are central, then the ring is commutative. In the present paper, we extended this bluestocking theorem to an arbitrary ring with involution involving...

Full description

Bibliographic Details
Main Authors: Shakir Ali, Turki M. Alsuraiheed, Mohammad Salahuddin Khan, Cihat Abdioglu, Mohammed Ayedh, Naira N. Rafiquee
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/14/3117
_version_ 1797588439704535040
author Shakir Ali
Turki M. Alsuraiheed
Mohammad Salahuddin Khan
Cihat Abdioglu
Mohammed Ayedh
Naira N. Rafiquee
author_facet Shakir Ali
Turki M. Alsuraiheed
Mohammad Salahuddin Khan
Cihat Abdioglu
Mohammed Ayedh
Naira N. Rafiquee
author_sort Shakir Ali
collection DOAJ
description A well-known result of Posner’s second theorem states that if the commutator of each element in a prime ring and its image under a nonzero derivation are central, then the ring is commutative. In the present paper, we extended this bluestocking theorem to an arbitrary ring with involution involving prime ideals. Further, apart from proving several other interesting and exciting results, we established the ∗-version of Vukman’s theorem. Precisely, we describe the structure of quotient ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">A</mi><mo>/</mo><mi mathvariant="fraktur">L</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> is an arbitrary ring and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">L</mi></semantics></math></inline-formula> is a prime ideal of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula>. Further, by taking advantage of the ∗-version of Vukman’s theorem, we show that if a 2-torsion free semiprime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> with involution admits a nonzero ∗-centralizing derivation, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> contains a nonzero central ideal. This result is in the spirit of the classical result due to Bell and Martindale (Theorem 3). As the applications, we extended and unified several classical theorems. Finally, we conclude our paper with a direction for further research.
first_indexed 2024-03-11T00:52:01Z
format Article
id doaj.art-ac9258a97f2240b1b5661d0ff14cfa10
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T00:52:01Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-ac9258a97f2240b1b5661d0ff14cfa102023-11-18T20:20:48ZengMDPI AGMathematics2227-73902023-07-011114311710.3390/math11143117Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with ApplicationsShakir Ali0Turki M. Alsuraiheed1Mohammad Salahuddin Khan2Cihat Abdioglu3Mohammed Ayedh4Naira N. Rafiquee5Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics, King Saud University, Riyadh 11495, Saudi ArabiaDepartment of Applied Mathematics, Z. H. College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics & Science Education, Karamanoglu Mehmetbey University, Karaman 70100, TurkeyDepartment of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh 202002, IndiaA well-known result of Posner’s second theorem states that if the commutator of each element in a prime ring and its image under a nonzero derivation are central, then the ring is commutative. In the present paper, we extended this bluestocking theorem to an arbitrary ring with involution involving prime ideals. Further, apart from proving several other interesting and exciting results, we established the ∗-version of Vukman’s theorem. Precisely, we describe the structure of quotient ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">A</mi><mo>/</mo><mi mathvariant="fraktur">L</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> is an arbitrary ring and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">L</mi></semantics></math></inline-formula> is a prime ideal of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula>. Further, by taking advantage of the ∗-version of Vukman’s theorem, we show that if a 2-torsion free semiprime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> with involution admits a nonzero ∗-centralizing derivation, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> contains a nonzero central ideal. This result is in the spirit of the classical result due to Bell and Martindale (Theorem 3). As the applications, we extended and unified several classical theorems. Finally, we conclude our paper with a direction for further research.https://www.mdpi.com/2227-7390/11/14/3117derivation∗-centralizing derivation∗-commuting derivationinvolutionprime idealprime ring
spellingShingle Shakir Ali
Turki M. Alsuraiheed
Mohammad Salahuddin Khan
Cihat Abdioglu
Mohammed Ayedh
Naira N. Rafiquee
Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications
Mathematics
derivation
∗-centralizing derivation
∗-commuting derivation
involution
prime ideal
prime ring
title Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications
title_full Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications
title_fullStr Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications
title_full_unstemmed Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications
title_short Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications
title_sort posner s theorem and ∗ centralizing derivations on prime ideals with applications
topic derivation
∗-centralizing derivation
∗-commuting derivation
involution
prime ideal
prime ring
url https://www.mdpi.com/2227-7390/11/14/3117
work_keys_str_mv AT shakirali posnerstheoremandcentralizingderivationsonprimeidealswithapplications
AT turkimalsuraiheed posnerstheoremandcentralizingderivationsonprimeidealswithapplications
AT mohammadsalahuddinkhan posnerstheoremandcentralizingderivationsonprimeidealswithapplications
AT cihatabdioglu posnerstheoremandcentralizingderivationsonprimeidealswithapplications
AT mohammedayedh posnerstheoremandcentralizingderivationsonprimeidealswithapplications
AT nairanrafiquee posnerstheoremandcentralizingderivationsonprimeidealswithapplications