Intelligent transportation systems (ITS): A systematic review using a Natural Language Processing (NLP) approach

Intelligent Transportation Systems (ITS) is not a new concept. Notably, ITS has been cited in various journal articles and proceedings papers around the world, and it has become increasingly popular. Additionally, ITS involves multidisciplinary science. The growing number of journal articles makes I...

Full description

Bibliographic Details
Main Authors: Zulkarnain, Tsarina Dwi Putri
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844021027183
Description
Summary:Intelligent Transportation Systems (ITS) is not a new concept. Notably, ITS has been cited in various journal articles and proceedings papers around the world, and it has become increasingly popular. Additionally, ITS involves multidisciplinary science. The growing number of journal articles makes ITS reviews complicated, and research gaps can be difficult to identify. The existing software for systematic reviews still relies on highly laborious tasks, manual reading, and a homogeneous dataset of research articles. This study proposes a framework that can address these issues, return a comprehensive systematic review of ITS, and promote efficient systematic reviews. The proposed framework consists of Natural Language Processing (NLP) methods i.e., Named Entity Recognition (NER), Latent Dirichlet Allocation (LDA), and word embedding (continuous skip-gram). It enables this study to explore the context of research articles and their overall interpretation to determine and define the directions of knowledge growth and ITS development. The framework can systematically separate unrelated documents and simplify the review process for large dataset. To our knowledge, compared to prior research regarding systematic review of ITS, this study offers more thorough review.
ISSN:2405-8440