An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas

Haken proved that every resolution refutation of the pigeonhole formula has at least exponential size. Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an exponential size. Here we show that any arbitrary OBDD refutation of the pigeonhole formula has an expo...

Full description

Bibliographic Details
Main Authors: Olga Tveretina, Carsten Sinz, Hans Zantema
Format: Article
Language:English
Published: Open Publishing Association 2009-09-01
Series:Electronic Proceedings in Theoretical Computer Science
Online Access:http://arxiv.org/pdf/0909.5038v1
_version_ 1818038970190135296
author Olga Tveretina
Carsten Sinz
Hans Zantema
author_facet Olga Tveretina
Carsten Sinz
Hans Zantema
author_sort Olga Tveretina
collection DOAJ
description Haken proved that every resolution refutation of the pigeonhole formula has at least exponential size. Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an exponential size. Here we show that any arbitrary OBDD refutation of the pigeonhole formula has an exponential size, too: we prove that the size of one of the intermediate OBDDs is at least $Omega(1.025^n)$.
first_indexed 2024-12-10T07:51:12Z
format Article
id doaj.art-acabe396d92c4fe981bfeab70c4b2921
institution Directory Open Access Journal
issn 2075-2180
language English
last_indexed 2024-12-10T07:51:12Z
publishDate 2009-09-01
publisher Open Publishing Association
record_format Article
series Electronic Proceedings in Theoretical Computer Science
spelling doaj.art-acabe396d92c4fe981bfeab70c4b29212022-12-22T01:57:02ZengOpen Publishing AssociationElectronic Proceedings in Theoretical Computer Science2075-21802009-09-014Proc. ACAC 2009132110.4204/EPTCS.4.2An Exponential Lower Bound on OBDD Refutations for Pigeonhole FormulasOlga TveretinaCarsten SinzHans ZantemaHaken proved that every resolution refutation of the pigeonhole formula has at least exponential size. Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an exponential size. Here we show that any arbitrary OBDD refutation of the pigeonhole formula has an exponential size, too: we prove that the size of one of the intermediate OBDDs is at least $Omega(1.025^n)$.http://arxiv.org/pdf/0909.5038v1
spellingShingle Olga Tveretina
Carsten Sinz
Hans Zantema
An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
Electronic Proceedings in Theoretical Computer Science
title An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
title_full An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
title_fullStr An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
title_full_unstemmed An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
title_short An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
title_sort exponential lower bound on obdd refutations for pigeonhole formulas
url http://arxiv.org/pdf/0909.5038v1
work_keys_str_mv AT olgatveretina anexponentiallowerboundonobddrefutationsforpigeonholeformulas
AT carstensinz anexponentiallowerboundonobddrefutationsforpigeonholeformulas
AT hanszantema anexponentiallowerboundonobddrefutationsforpigeonholeformulas
AT olgatveretina exponentiallowerboundonobddrefutationsforpigeonholeformulas
AT carstensinz exponentiallowerboundonobddrefutationsforpigeonholeformulas
AT hanszantema exponentiallowerboundonobddrefutationsforpigeonholeformulas