A Parametric Generalization of the Baskakov-Schurer-Szász-Stancu Approximation Operators

In this paper, we introduce and investigate a new class of the parametric generalization of the Baskakov-Schurer-Szász-Stancu operators, which considerably extends the well-known class of the classical Baskakov-Schurer-Szász-Stancu approximation operators. For this new class of approximation operato...

Full description

Bibliographic Details
Main Authors: Naim Latif Braha, Toufik Mansour, Hari Mohan Srivastava
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/6/980
Description
Summary:In this paper, we introduce and investigate a new class of the parametric generalization of the Baskakov-Schurer-Szász-Stancu operators, which considerably extends the well-known class of the classical Baskakov-Schurer-Szász-Stancu approximation operators. For this new class of approximation operators, we present a Korovkin type theorem and a Grüss-Voronovskaya type theorem, and also study the rate of its convergence. Moreover, we derive several results which are related to the parametric generalization of the Baskakov-Schurer-Szász-Stancu operators in the weighted spaces. Finally, we prove some shape-preserving properties for the parametric generalization of the Baskakov-Schurer-Szász-Stancu operators and, as a special case, we deduce the corresponding shape-preserving properties for the classical Baskakov-Schurer-Szász-Stancu approximation operators.
ISSN:2073-8994