Summary: | This paper reports a numerical investigation of the motion of spherical and non-spherical particles with/without gas blowing-out in a vertical uniform flow. A sphere, spheroid and pulverized coal particle are targeted in this study. The shape of coal particle is three-dimensionally modeled by scanning a coal particle using the X-ray CT method. As a first stage of the research, the Arbitrary Lagrangian-Eulerian (ALE) method is validated by comparing with the experiment. Secondly, the simulations of spherical and non-spherical particles with or without gas blowing-out in a vertical uniform flow are performed. The results show that the spheroidal particle with equivalent volume has a more similar accelerating motion to that of coal particle than spherical particle. For spheroidal particle, its distribution of PDF of CD shows a possibility to make a CD equation with Re and particle's orientation. It is also revealed that the motion of coal particle with irregular shape is significantly dependent on its shape, especially with gas blowing-out. A new model in which this complex shape effects can be considered is required to describe the irregular shape particle.
|