Knowledge-Guided Prompt Learning for Few-Shot Text Classification

Recently, prompt-based learning has shown impressive performance on various natural language processing tasks in few-shot scenarios. The previous study of knowledge probing showed that the success of prompt learning contributes to the implicit knowledge stored in pre-trained language models. However...

Full description

Bibliographic Details
Main Authors: Liangguo Wang, Ruoyu Chen, Li Li
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/6/1486
Description
Summary:Recently, prompt-based learning has shown impressive performance on various natural language processing tasks in few-shot scenarios. The previous study of knowledge probing showed that the success of prompt learning contributes to the implicit knowledge stored in pre-trained language models. However, how this implicit knowledge helps solve downstream tasks remains unclear. In this work, we propose a knowledge-guided prompt learning method that can reveal relevant knowledge for text classification. Specifically, a knowledge prompting template and two multi-task frameworks were designed, respectively. The experiments demonstrated the superiority of combining knowledge and prompt learning in few-shot text classification.
ISSN:2079-9292