Real-time detection of powder bed defects in laser powder bed fusion using deep learning on 3D point clouds

Powder bed defects are critical factors affecting the print quality and stability in Laser Powder Bed Fusion (LPBF). However, traditional 2D image-based powder bed defect monitoring methods are limited by sensitivity to lighting conditions and insufficient data capture. This study proposes a real-ti...

詳細記述

書誌詳細
主要な著者: Junlai Zhao, Zihan Yang, Qingpeng Chen, Chen Zhang, Jianhui Zhao, Guoqing Zhang, Fang Dong, Sheng Liu
フォーマット: 論文
言語:English
出版事項: Taylor & Francis Group 2025-12-01
シリーズ:Virtual and Physical Prototyping
主題:
オンライン・アクセス:https://www.tandfonline.com/doi/10.1080/17452759.2024.2449171

類似資料