Real-time detection of powder bed defects in laser powder bed fusion using deep learning on 3D point clouds
Powder bed defects are critical factors affecting the print quality and stability in Laser Powder Bed Fusion (LPBF). However, traditional 2D image-based powder bed defect monitoring methods are limited by sensitivity to lighting conditions and insufficient data capture. This study proposes a real-ti...
Автори: | Junlai Zhao, Zihan Yang, Qingpeng Chen, Chen Zhang, Jianhui Zhao, Guoqing Zhang, Fang Dong, Sheng Liu |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Taylor & Francis Group
2025-12-01
|
Серія: | Virtual and Physical Prototyping |
Предмети: | |
Онлайн доступ: | https://www.tandfonline.com/doi/10.1080/17452759.2024.2449171 |
Схожі ресурси
Схожі ресурси
-
Microwave Reflectometry for Online Monitoring of Metal Powder Used in Laser Powder Bed Fusion Additive Manufacturing
за авторством: Farzaneh Ahmadi, та інші
Опубліковано: (2025-01-01) -
Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion
за авторством: Fuzhong Chu, та інші
Опубліковано: (2021-03-01) -
Electrical Smoothing of the Powder Bed Surface in Laser-Based Powder Bed Fusion of Metals
за авторством: Andreas Hofmann, та інші
Опубліковано: (2024-05-01) -
A new approach to the reasons for dependency of defects formation to the process parameters in laser powder bed fusion of IN625 on the IN738LC substrate
за авторством: Amirhossein Riazi, та інші
Опубліковано: (2025-06-01) -
Measurement of powder bed oxygen content by image analysis in laser powder bed fusion
за авторством: Timothée Delacroix, та інші
Опубліковано: (2023-02-01)