Granular-slurry rheology and asphalt compaction

Hot mixed asphalt (HMA) is a mixture of particles (coarse and fine aggregates) and interstitial fluid (asphalt binder) designed to compact and harden for long-lasting roads. In this study, we implement a two-scale approach to capture the compaction behaviour of hot asphalt mixtures using both a gran...

Full description

Bibliographic Details
Main Authors: Man Teng, Hill Kimberly
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/03/epjconf_pg2021_09010.pdf
Description
Summary:Hot mixed asphalt (HMA) is a mixture of particles (coarse and fine aggregates) and interstitial fluid (asphalt binder) designed to compact and harden for long-lasting roads. In this study, we implement a two-scale approach to capture the compaction behaviour of hot asphalt mixtures using both a granular-slurry rheology (GSR) at a smaller scale and a discrete element method (DEM) simulation at the scale of a compactor. We show that this modelling effort captures the compaction of HMA with different binder viscosities modified by adding graphene nano-platelets (GNP). This research has the capacity to shed light on how the properties of mixture components can influence compaction efficiency and effectiveness.
ISSN:2100-014X