Interactions in plasticizer mixtures used for sugar replacement

In our quest for novel ingredients to be used in sugar replacement strategies, we have investigated the thermodynamics of polycarboxylic acids, such as citric acid. We have demonstrated the applicability of the Flory-Huggins (FH) theory to describe the thermodynamics of polycarboxylic acids solution...

Full description

Bibliographic Details
Main Author: R.G.M. van der Sman
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Current Research in Food Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2665927123000400
_version_ 1797798025846849536
author R.G.M. van der Sman
author_facet R.G.M. van der Sman
author_sort R.G.M. van der Sman
collection DOAJ
description In our quest for novel ingredients to be used in sugar replacement strategies, we have investigated the thermodynamics of polycarboxylic acids, such as citric acid. We have demonstrated the applicability of the Flory-Huggins (FH) theory to describe the thermodynamics of polycarboxylic acids solutions. Moreover, for citric acid we can describe the complete phase diagram with the theory. It shows that polycarboxylic acids have similar plasticizing and hygroscopic properties as sugars and polyols.Regarding mixtures of polycarboxylic acids and carbohydrates, the FH theory is able to describe a) the water activity of the mixtures, b) the solubility of ternary mixtures of acids and sugars, c) the lowering of the deliquescence point for binary mixtures of crystals, and d) the melting point depression in eutectic mixtures. Unexpectingly, our investigations show there is a strong non-zero FH interaction parameter between carboxylic acids and carbohydrates. In our prior sugar replacement strategy we have assumed zero interactions between plasticizers. Here, we will readdress this assumption. Carefull investigations of solid-liquid equilibrium of eutectic mixtures involving polycarboxylic acids and/or carbohydrates, shows nearly zero interaction in eutectic mixtures consisting only of two carbohydrates or two polycarboxylic acids. We now hold the hypothesis that there is strong non-zero interaction if the mixture contains plasticizers strongly differing in the amount of hydrogen bonding groups. This strong interaction explains why these mixtures, like polycarboxylic acids and carbohydrates, are excellent candidates as deep eutectic solvents. Furthermore, we conclude that polycarboxylic acids are useful additions to the toolbox of sugar replacers, albeit that there are some limitations to their amounts used.
first_indexed 2024-03-13T03:57:14Z
format Article
id doaj.art-ad1729d720854aba9936984fd2583c7d
institution Directory Open Access Journal
issn 2665-9271
language English
last_indexed 2024-03-13T03:57:14Z
publishDate 2023-01-01
publisher Elsevier
record_format Article
series Current Research in Food Science
spelling doaj.art-ad1729d720854aba9936984fd2583c7d2023-06-22T05:05:01ZengElsevierCurrent Research in Food Science2665-92712023-01-016100472Interactions in plasticizer mixtures used for sugar replacementR.G.M. van der Sman0Wageningen Food Biobased Research, Wageningen University & Research, the Netherlands; Food Process Engineering, Wageningen University & Research, the Netherlands; Wageningen Food Biobased Research, Wageningen University & Research, the Netherlands.In our quest for novel ingredients to be used in sugar replacement strategies, we have investigated the thermodynamics of polycarboxylic acids, such as citric acid. We have demonstrated the applicability of the Flory-Huggins (FH) theory to describe the thermodynamics of polycarboxylic acids solutions. Moreover, for citric acid we can describe the complete phase diagram with the theory. It shows that polycarboxylic acids have similar plasticizing and hygroscopic properties as sugars and polyols.Regarding mixtures of polycarboxylic acids and carbohydrates, the FH theory is able to describe a) the water activity of the mixtures, b) the solubility of ternary mixtures of acids and sugars, c) the lowering of the deliquescence point for binary mixtures of crystals, and d) the melting point depression in eutectic mixtures. Unexpectingly, our investigations show there is a strong non-zero FH interaction parameter between carboxylic acids and carbohydrates. In our prior sugar replacement strategy we have assumed zero interactions between plasticizers. Here, we will readdress this assumption. Carefull investigations of solid-liquid equilibrium of eutectic mixtures involving polycarboxylic acids and/or carbohydrates, shows nearly zero interaction in eutectic mixtures consisting only of two carbohydrates or two polycarboxylic acids. We now hold the hypothesis that there is strong non-zero interaction if the mixture contains plasticizers strongly differing in the amount of hydrogen bonding groups. This strong interaction explains why these mixtures, like polycarboxylic acids and carbohydrates, are excellent candidates as deep eutectic solvents. Furthermore, we conclude that polycarboxylic acids are useful additions to the toolbox of sugar replacers, albeit that there are some limitations to their amounts used.http://www.sciencedirect.com/science/article/pii/S2665927123000400HygroscopicityPolycarboxylic acidsFlory-huggins theorySugar replacement
spellingShingle R.G.M. van der Sman
Interactions in plasticizer mixtures used for sugar replacement
Current Research in Food Science
Hygroscopicity
Polycarboxylic acids
Flory-huggins theory
Sugar replacement
title Interactions in plasticizer mixtures used for sugar replacement
title_full Interactions in plasticizer mixtures used for sugar replacement
title_fullStr Interactions in plasticizer mixtures used for sugar replacement
title_full_unstemmed Interactions in plasticizer mixtures used for sugar replacement
title_short Interactions in plasticizer mixtures used for sugar replacement
title_sort interactions in plasticizer mixtures used for sugar replacement
topic Hygroscopicity
Polycarboxylic acids
Flory-huggins theory
Sugar replacement
url http://www.sciencedirect.com/science/article/pii/S2665927123000400
work_keys_str_mv AT rgmvandersman interactionsinplasticizermixturesusedforsugarreplacement