Hyaluronan-based theranostic nanomicelles for breast cancer-targeting and anticancer drug delivery

Integration of diagnostic and therapeutic modalities into a single nanoplatform can play an important role in personalized cancer therapy. In this work, an all-in-one theranostic nanoplatform (HPCT nanomicelles) for breast cancer was fabricated, composed of the synthetic polymer hyaluronan-b-poly(ε-...

Full description

Bibliographic Details
Main Authors: Yibin Yu, Chong Huang, Fen Chen, Weisan Pan, Ling Zhang
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127522011741
Description
Summary:Integration of diagnostic and therapeutic modalities into a single nanoplatform can play an important role in personalized cancer therapy. In this work, an all-in-one theranostic nanoplatform (HPCT nanomicelles) for breast cancer was fabricated, composed of the synthetic polymer hyaluronan-b-poly(ε-caprolactone) (HA-PCL), drug curcumin (Cur) and adjuvant tocopheryl polyethylene glycol succinate (TPGS). HPCT nanomicelles presented adequate drug loading efficiency, excellent stability, and attractive hyaluronidase-sensitive release features. Imaging agent radionuclide 99mTc was loaded into HPCT nanomicelles (denoted as 99mTc-HPCT nanomicelles) and in vivo SPECT/CT imaging verified the HA-based nanomicelles could actively target breast cancer in mice. In vivo anti-tumor pharmacodynamic studies indicated that HPCT nanomicelles exhibited desirable anti-tumor efficacy with favorable biosafety. 99mTc-HPCT nanomicelles, integrating imaging and therapeutic modalities, have the promising potential to be an all-in-one theranostic nanoplatform for breast cancer.
ISSN:0264-1275