Existence of Global Attractors in <inline-formula> <graphic file="1687-2770-2009-563767-i1.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2009-563767-i2.gif"/></inline-formula>-Laplacian Parabolic Equation in <inline-formula> <graphic file="1687-2770-2009-563767-i3.gif"/></inline-formula>

<p>Abstract</p> <p>We study the long-time behavior of solution for the <inline-formula> <graphic file="1687-2770-2009-563767-i4.gif"/></inline-formula>-Laplacian equation <inline-formula> <graphic file="1687-2770-2009-563767-i5.gif"/&g...

Full description

Bibliographic Details
Main Authors: Chen Caisheng, Shi Lanfang, Wang Hui
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2009/563767
Description
Summary:<p>Abstract</p> <p>We study the long-time behavior of solution for the <inline-formula> <graphic file="1687-2770-2009-563767-i4.gif"/></inline-formula>-Laplacian equation <inline-formula> <graphic file="1687-2770-2009-563767-i5.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2009-563767-i6.gif"/></inline-formula>, in which the nonlinear term <inline-formula> <graphic file="1687-2770-2009-563767-i7.gif"/></inline-formula> is a function like <inline-formula> <graphic file="1687-2770-2009-563767-i8.gif"/></inline-formula> with <inline-formula> <graphic file="1687-2770-2009-563767-i9.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2009-563767-i10.gif"/></inline-formula>, or <inline-formula> <graphic file="1687-2770-2009-563767-i11.gif"/></inline-formula> with <inline-formula> <graphic file="1687-2770-2009-563767-i12.gif"/></inline-formula> and <inline-formula> <graphic file="1687-2770-2009-563767-i13.gif"/></inline-formula>. We prove the existence of a global <inline-formula> <graphic file="1687-2770-2009-563767-i14.gif"/></inline-formula>-attractor for any <inline-formula> <graphic file="1687-2770-2009-563767-i15.gif"/></inline-formula>.</p>
ISSN:1687-2762
1687-2770