Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting

The Kernel ridge regression (<inline-formula><math display="inline"> <semantics> <mrow> <mi>K</mi> <mi>R</mi> <mi>R</mi></mrow></semantics></math></inline-formula>) model aims to find the hidden nonlinear s...

Full description

Bibliographic Details
Main Authors: Shiguang Zhang, Ting Zhou, Lin Sun, Chao Liu
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/2/282
_version_ 1798038932157366272
author Shiguang Zhang
Ting Zhou
Lin Sun
Chao Liu
author_facet Shiguang Zhang
Ting Zhou
Lin Sun
Chao Liu
author_sort Shiguang Zhang
collection DOAJ
description The Kernel ridge regression (<inline-formula><math display="inline"> <semantics> <mrow> <mi>K</mi> <mi>R</mi> <mi>R</mi></mrow></semantics></math></inline-formula>) model aims to find the hidden nonlinear structure in raw data. It makes an assumption that the noise in data satisfies the Gaussian model. However, it was pointed out that the noise in wind speed/power forecasting obeys the Beta distribution. The classic regression techniques are not applicable to this case. Hence, we derive the empirical risk loss about the Beta distribution and propose a technique of the kernel ridge regression model based on the Beta-noise (<inline-formula><math display="inline"> <semantics> <mrow> <mi>B</mi> <mi>N</mi></mrow></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>K</mi> <mi>R</mi> <mi>R</mi></mrow></semantics></math></inline-formula>). The numerical experiments are carried out on real-world data. The results indicate that the proposed technique obtains good performance on short-term wind speed forecasting.
first_indexed 2024-04-11T21:47:00Z
format Article
id doaj.art-ad32153bab1d41fba05cb41fb6ed976c
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-11T21:47:00Z
publishDate 2019-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-ad32153bab1d41fba05cb41fb6ed976c2022-12-22T04:01:24ZengMDPI AGSymmetry2073-89942019-02-0111228210.3390/sym11020282sym11020282Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed ForecastingShiguang Zhang0Ting Zhou1Lin Sun2Chao Liu3College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, ChinaThe State-Owned Assets Management Office, Henan Normal University, Xinxiang 453007, ChinaCollege of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, ChinaCollege of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, ChinaThe Kernel ridge regression (<inline-formula><math display="inline"> <semantics> <mrow> <mi>K</mi> <mi>R</mi> <mi>R</mi></mrow></semantics></math></inline-formula>) model aims to find the hidden nonlinear structure in raw data. It makes an assumption that the noise in data satisfies the Gaussian model. However, it was pointed out that the noise in wind speed/power forecasting obeys the Beta distribution. The classic regression techniques are not applicable to this case. Hence, we derive the empirical risk loss about the Beta distribution and propose a technique of the kernel ridge regression model based on the Beta-noise (<inline-formula><math display="inline"> <semantics> <mrow> <mi>B</mi> <mi>N</mi></mrow></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>K</mi> <mi>R</mi> <mi>R</mi></mrow></semantics></math></inline-formula>). The numerical experiments are carried out on real-world data. The results indicate that the proposed technique obtains good performance on short-term wind speed forecasting.https://www.mdpi.com/2073-8994/11/2/282ridge regression modelkernel functionBeta-noise empirical risk losswind speed forecasting
spellingShingle Shiguang Zhang
Ting Zhou
Lin Sun
Chao Liu
Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting
Symmetry
ridge regression model
kernel function
Beta-noise empirical risk loss
wind speed forecasting
title Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting
title_full Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting
title_fullStr Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting
title_full_unstemmed Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting
title_short Kernel Ridge Regression Model Based on Beta-Noise and Its Application in Short-Term Wind Speed Forecasting
title_sort kernel ridge regression model based on beta noise and its application in short term wind speed forecasting
topic ridge regression model
kernel function
Beta-noise empirical risk loss
wind speed forecasting
url https://www.mdpi.com/2073-8994/11/2/282
work_keys_str_mv AT shiguangzhang kernelridgeregressionmodelbasedonbetanoiseanditsapplicationinshorttermwindspeedforecasting
AT tingzhou kernelridgeregressionmodelbasedonbetanoiseanditsapplicationinshorttermwindspeedforecasting
AT linsun kernelridgeregressionmodelbasedonbetanoiseanditsapplicationinshorttermwindspeedforecasting
AT chaoliu kernelridgeregressionmodelbasedonbetanoiseanditsapplicationinshorttermwindspeedforecasting