Summary: | Abstract Background Mangosteen is a native fruit from Southeast Asia. It is rich in phenolic compounds such as xanthones, anthocyanins and phenolic acids. Mangosteen pericarp extract showed inhibitory activity towards pancreatic lipase and may have potential use for obesity treatment. However, there is limited study on the beneficial effects of mangosteen flesh against obesity. This study aimed to investigate the effects of Garcinia mangostana flesh (GMF) on biochemical and morphological changes in the liver and kidney of high-fat diet-induced obese rats. Methods Forty healthy Sprague-Dawley rats were randomised into five groups (n = 8) with four groups were fed with high-fat diet (HFD) for 10 weeks and a control group was fed with rat chow diet. Supplementation with GMF in obese rats was continued for 7 weeks starting from week 10th after the initiation of HFD at different doses (200 mg/kg, 400 mg/kg and 600 mg/kg). The positive and negative control rats were given distilled water via oral gavage. Plasma lipid profile, antioxidant enzymes and pro-inflammatory markers were determined using commercial kits. Liver and kidney structure were defined by histology. Results The rats fed with HFD for 10 weeks increased plasma LDL-cholesterol, reduced plasma glutathione peroxidase level and had significantly higher body weight compared to normal control rats (p < 0.05). Obese rats also showed elevated level of TNF-α and IL-6 after 17 weeks of HFD. Supplementation with GMF for 7 weeks in obese rats reduced their body weight, improved lipid profile, increased total antioxidant capacity and glutathione peroxidase level and lowered plasma pro-inflammatory markers (TNF-α and IL-6) (p < 0.05). In addition, GMF supplementation attenuated the abnormalities of the liver and kidney tissue caused by high fat diet. Conclusion Taken together, the findings suggest that supplementation of Garcinia mangostana flesh may help in reducing body weight and has the potential to ameliorate the biochemical changes of the high fat diet-induced obesity in rats. Further studies on pharmacodynamic and pharmacokinetic are required before the results are translated to human.
|