The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines

For given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a,b] \subset \mathbb{R}$ we solve the extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over sets of trigonometric polynomials $T$ of order $\leqslant n$ and $2\pi$-periodic splines $s$ of order $...

Full description

Bibliographic Details
Main Authors: E.V. Asadova, V.A. Kofanov
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2019-07-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/108
_version_ 1811293226803396608
author E.V. Asadova
V.A. Kofanov
author_facet E.V. Asadova
V.A. Kofanov
author_sort E.V. Asadova
collection DOAJ
description For given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a,b] \subset \mathbb{R}$ we solve the extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over sets of trigonometric polynomials $T$ of order $\leqslant n$ and $2\pi$-periodic splines $s$ of order $r$ and minimal defect with knots at the points $k\pi / n$, $k \in \mathbb{Z}$, such that $\| T \| _{p, \delta} \leqslant A \| \sin n (\cdot) \|_{p, \delta} \leqslant A \| \varphi_{n,r} \|_{p, \delta}$, $\delta \in (0, \pi / n]$, where $\| x \|_{p, \delta} := \sup \{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a < \delta\}$ and $\varphi_{n, r}$ is the $(2\pi / n)$-periodic spline of Euler of order $r$. In particular, we solve the same problem for the intermediate derivatives $x^{(k)}$, $k = 1, ..., r-1$, with $q \geqslant 1$.
first_indexed 2024-04-13T04:57:19Z
format Article
id doaj.art-ad4b9f13c73e4b0d886b9561d7c254e7
institution Directory Open Access Journal
issn 2664-4991
2664-5009
language English
last_indexed 2024-04-13T04:57:19Z
publishDate 2019-07-01
publisher Oles Honchar Dnipro National University
record_format Article
series Researches in Mathematics
spelling doaj.art-ad4b9f13c73e4b0d886b9561d7c254e72022-12-22T03:01:26ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092019-07-0127131310.15421/241901The Bojanov-Naidenov problem for trigonometric polynomials and periodic splinesE.V. Asadova0V.A. Kofanov1Oles Honchar Dnipro National UniversityOles Honchar Dnipro National UniversityFor given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a,b] \subset \mathbb{R}$ we solve the extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over sets of trigonometric polynomials $T$ of order $\leqslant n$ and $2\pi$-periodic splines $s$ of order $r$ and minimal defect with knots at the points $k\pi / n$, $k \in \mathbb{Z}$, such that $\| T \| _{p, \delta} \leqslant A \| \sin n (\cdot) \|_{p, \delta} \leqslant A \| \varphi_{n,r} \|_{p, \delta}$, $\delta \in (0, \pi / n]$, where $\| x \|_{p, \delta} := \sup \{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a < \delta\}$ and $\varphi_{n, r}$ is the $(2\pi / n)$-periodic spline of Euler of order $r$. In particular, we solve the same problem for the intermediate derivatives $x^{(k)}$, $k = 1, ..., r-1$, with $q \geqslant 1$.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/108Bojanov-Naidenov problempolynomialsplinerearrangement
spellingShingle E.V. Asadova
V.A. Kofanov
The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines
Researches in Mathematics
Bojanov-Naidenov problem
polynomial
spline
rearrangement
title The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines
title_full The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines
title_fullStr The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines
title_full_unstemmed The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines
title_short The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines
title_sort bojanov naidenov problem for trigonometric polynomials and periodic splines
topic Bojanov-Naidenov problem
polynomial
spline
rearrangement
url https://vestnmath.dnu.dp.ua/index.php/rim/article/view/108
work_keys_str_mv AT evasadova thebojanovnaidenovproblemfortrigonometricpolynomialsandperiodicsplines
AT vakofanov thebojanovnaidenovproblemfortrigonometricpolynomialsandperiodicsplines
AT evasadova bojanovnaidenovproblemfortrigonometricpolynomialsandperiodicsplines
AT vakofanov bojanovnaidenovproblemfortrigonometricpolynomialsandperiodicsplines