Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis

IntroductionIdentification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several...

Full description

Bibliographic Details
Main Authors: Guadalupe Nibeyro, Veronica Baronetto, Juan I. Folco, Pablo Pastore, Maria Romina Girotti, Laura Prato, Gabriel Morón, Hugo D. Luján, Elmer A. Fernández
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-07-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2023.1094236/full
_version_ 1797771988399292416
author Guadalupe Nibeyro
Veronica Baronetto
Juan I. Folco
Pablo Pastore
Maria Romina Girotti
Laura Prato
Gabriel Morón
Gabriel Morón
Hugo D. Luján
Hugo D. Luján
Elmer A. Fernández
Elmer A. Fernández
Elmer A. Fernández
author_facet Guadalupe Nibeyro
Veronica Baronetto
Juan I. Folco
Pablo Pastore
Maria Romina Girotti
Laura Prato
Gabriel Morón
Gabriel Morón
Hugo D. Luján
Hugo D. Luján
Elmer A. Fernández
Elmer A. Fernández
Elmer A. Fernández
author_sort Guadalupe Nibeyro
collection DOAJ
description IntroductionIdentification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several methods were proposed as TSNs immunogenicity predictors; however, comprehensive performance comparison is still lacking due to the absence of well documented and adequate TSN databases.MethodsHere, by developing a new curated database having 199 TSNs with experimentally-validated MHC-I presentation and positive/negative immune response (ITSNdb), sixteen metrics were evaluated as immunogenicity predictors. In addition, by using a dataset emulating patient derived TSNs and immunotherapy cohorts containing predicted TSNs for tumor neoantigen burden (TNB) with outcome association, the metrics were evaluated as TSNs prioritizers and as immunotherapy response biomarkers.ResultsOur results show high performance variability among methods, highlighting the need for substantial improvement. Deep learning predictors were top ranked on ITSNdb but show discrepancy on validation databases. In overall, current predicted TNB did not outperform existing biomarkers.ConclusionRecommendations for their clinical application and the ITSNdb are presented to promote development and comparison of computational TSNs immunogenicity predictors.
first_indexed 2024-03-12T21:44:35Z
format Article
id doaj.art-ad5d77a1007d48128d7b7a79f122f733
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-03-12T21:44:35Z
publishDate 2023-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-ad5d77a1007d48128d7b7a79f122f7332023-07-26T13:13:49ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-07-011410.3389/fimmu.2023.10942361094236Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysisGuadalupe Nibeyro0Veronica Baronetto1Juan I. Folco2Pablo Pastore3Maria Romina Girotti4Laura Prato5Gabriel Morón6Gabriel Morón7Hugo D. Luján8Hugo D. Luján9Elmer A. Fernández10Elmer A. Fernández11Elmer A. Fernández12Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, ArgentinaCentro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, ArgentinaFacultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, ArgentinaFacultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, ArgentinaUniversidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Buenos Aires, ArgentinaInstituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Córdoba, ArgentinaDepartamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, ArgentinaCentro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, ArgentinaCentro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, ArgentinaFacultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba, ArgentinaCentro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, ArgentinaFacultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, ArgentinaFacultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, ArgentinaIntroductionIdentification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several methods were proposed as TSNs immunogenicity predictors; however, comprehensive performance comparison is still lacking due to the absence of well documented and adequate TSN databases.MethodsHere, by developing a new curated database having 199 TSNs with experimentally-validated MHC-I presentation and positive/negative immune response (ITSNdb), sixteen metrics were evaluated as immunogenicity predictors. In addition, by using a dataset emulating patient derived TSNs and immunotherapy cohorts containing predicted TSNs for tumor neoantigen burden (TNB) with outcome association, the metrics were evaluated as TSNs prioritizers and as immunotherapy response biomarkers.ResultsOur results show high performance variability among methods, highlighting the need for substantial improvement. Deep learning predictors were top ranked on ITSNdb but show discrepancy on validation databases. In overall, current predicted TNB did not outperform existing biomarkers.ConclusionRecommendations for their clinical application and the ITSNdb are presented to promote development and comparison of computational TSNs immunogenicity predictors.https://www.frontiersin.org/articles/10.3389/fimmu.2023.1094236/fullimmunotherapycancer immunologyneopeptideimmunogenic neoantigen databaseimmunoinformatic
spellingShingle Guadalupe Nibeyro
Veronica Baronetto
Juan I. Folco
Pablo Pastore
Maria Romina Girotti
Laura Prato
Gabriel Morón
Gabriel Morón
Hugo D. Luján
Hugo D. Luján
Elmer A. Fernández
Elmer A. Fernández
Elmer A. Fernández
Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis
Frontiers in Immunology
immunotherapy
cancer immunology
neopeptide
immunogenic neoantigen database
immunoinformatic
title Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis
title_full Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis
title_fullStr Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis
title_full_unstemmed Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis
title_short Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis
title_sort unraveling tumor specific neoantigen immunogenicity prediction a comprehensive analysis
topic immunotherapy
cancer immunology
neopeptide
immunogenic neoantigen database
immunoinformatic
url https://www.frontiersin.org/articles/10.3389/fimmu.2023.1094236/full
work_keys_str_mv AT guadalupenibeyro unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT veronicabaronetto unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT juanifolco unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT pablopastore unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT mariarominagirotti unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT lauraprato unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT gabrielmoron unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT gabrielmoron unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT hugodlujan unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT hugodlujan unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT elmerafernandez unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT elmerafernandez unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis
AT elmerafernandez unravelingtumorspecificneoantigenimmunogenicitypredictionacomprehensiveanalysis