Discovering ePassport Vulnerabilities using Bisimilarity

We uncover privacy vulnerabilities in the ICAO 9303 standard implemented by ePassports worldwide. These vulnerabilities, confirmed by ICAO, enable an ePassport holder who recently passed through a checkpoint to be reidentified without opening their ePassport. This paper explains how bisimilarity was...

Full description

Bibliographic Details
Main Authors: Ross Horne, Sjouke Mauw
Format: Article
Language:English
Published: Logical Methods in Computer Science e.V. 2021-06-01
Series:Logical Methods in Computer Science
Subjects:
Online Access:https://lmcs.episciences.org/6117/pdf
Description
Summary:We uncover privacy vulnerabilities in the ICAO 9303 standard implemented by ePassports worldwide. These vulnerabilities, confirmed by ICAO, enable an ePassport holder who recently passed through a checkpoint to be reidentified without opening their ePassport. This paper explains how bisimilarity was used to discover these vulnerabilities, which exploit the BAC protocol - the original ICAO 9303 standard ePassport authentication protocol - and remains valid for the PACE protocol, which improves on the security of BAC in the latest ICAO 9303 standards. In order to tackle such bisimilarity problems, we develop here a chain of methods for the applied $\pi$-calculus including a symbolic under-approximation of bisimilarity, called open bisimilarity, and a modal logic, called classical FM, for describing and certifying attacks. Evidence is provided to argue for a new scheme for specifying such unlinkability problems that more accurately reflects the capabilities of an attacker.
ISSN:1860-5974