Summary: | Bayesian models of object recognition propose the resolution of ambiguity through probabilistic integration of prior experience with available sensory information. Color, even when task-irrelevant, has been shown to modulate high-level cognitive control tasks. However, it remains unclear how color modulations affect lower-level perceptual processing. We investigated whether color affects feature integration using the flash-jump illusion. This illusion occurs when an apparent motion stimulus, a rectangular bar appearing at different locations along a motion trajectory, changes color at a single position. Observers misperceive this color change as occurring farther along the trajectory of motion. This mislocalization error is proposed to be produced by a Bayesian perceptual framework dependent on responses in area V4. Our results demonstrated that the color of the flash modulated the magnitude of the flash-jump illusion such that participants reported less of a shift, i.e., a more veridical flash location, for both red and blue flashes, as compared to green and yellow. Our findings extend color-dependent modulation effects found in higher-order executive functions into lower-level Bayesian perceptual processes. Our results also support the theory that feature integration is a Bayesian process. In this framework, color modulations play an inherent and automatic role as different colors have different weights in Bayesian perceptual processing.
|