Summary: | Changes in marine carbon cycling due to hurricanes with different intensity and translation speeds have not been systematically investigated. This study uses an idealized coupled physical-biogeochemical model and a suite of model sensitivity analyses to better quantify the relationship between hurricane characteristics and marine property changes, including variations in air-sea carbon flux and partial pressure of carbon dioxide in water (pCO<sub>2</sub>w). We find that strong (category 4–5), mid-speed (5–8 m/s) storms cause the most carbon flux from the atmosphere to the ocean, and that the relationship between air-sea carbon flux and hurricane properties is non-linear. Climate models that do not consider synoptic-scale, storm-induced physical-biogeochemical coupling may underestimate regional carbon sinks.
|