On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacia...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2021-03-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/4143 |
_version_ | 1797205802084204544 |
---|---|
author | S. Pirzada B.A. Rather T.A. Chishti |
author_facet | S. Pirzada B.A. Rather T.A. Chishti |
author_sort | S. Pirzada |
collection | DOAJ |
description | For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral. |
first_indexed | 2024-04-24T08:56:54Z |
format | Article |
id | doaj.art-ad8f11e48c1b4e798612407513c6d4d5 |
institution | Directory Open Access Journal |
issn | 2075-9827 2313-0210 |
language | English |
last_indexed | 2024-04-24T08:56:54Z |
publishDate | 2021-03-01 |
publisher | Vasyl Stefanyk Precarpathian National University |
record_format | Article |
series | Karpatsʹkì Matematičnì Publìkacìï |
spelling | doaj.art-ad8f11e48c1b4e798612407513c6d4d52024-04-16T07:05:54ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102021-03-01131485710.15330/cmp.13.1.48-573617On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$S. Pirzada0B.A. Rather1https://orcid.org/0000-0003-1381-0291T.A. Chishti2University of Kashmir, 190006, Srinagar, Kashmir, IndiaUniversity of Kashmir, 190006, Srinagar, IndiaUniversity of Kashmir, 190006, Srinagar, IndiaFor a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.https://journals.pnu.edu.ua/index.php/cmp/article/view/4143laplacian matrixdistance laplacian matrixcommutative ringzero divisor graph |
spellingShingle | S. Pirzada B.A. Rather T.A. Chishti On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$ Karpatsʹkì Matematičnì Publìkacìï laplacian matrix distance laplacian matrix commutative ring zero divisor graph |
title | On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$ |
title_full | On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$ |
title_fullStr | On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$ |
title_full_unstemmed | On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$ |
title_short | On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$ |
title_sort | on distance laplacian spectrum of zero divisor graphs of the ring mathbb z n |
topic | laplacian matrix distance laplacian matrix commutative ring zero divisor graph |
url | https://journals.pnu.edu.ua/index.php/cmp/article/view/4143 |
work_keys_str_mv | AT spirzada ondistancelaplacianspectrumofzerodivisorgraphsoftheringmathbbzn AT barather ondistancelaplacianspectrumofzerodivisorgraphsoftheringmathbbzn AT tachishti ondistancelaplacianspectrumofzerodivisorgraphsoftheringmathbbzn |