On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$

For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacia...

Full description

Bibliographic Details
Main Authors: S. Pirzada, B.A. Rather, T.A. Chishti
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2021-03-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4143
_version_ 1797205802084204544
author S. Pirzada
B.A. Rather
T.A. Chishti
author_facet S. Pirzada
B.A. Rather
T.A. Chishti
author_sort S. Pirzada
collection DOAJ
description For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.
first_indexed 2024-04-24T08:56:54Z
format Article
id doaj.art-ad8f11e48c1b4e798612407513c6d4d5
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:56:54Z
publishDate 2021-03-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-ad8f11e48c1b4e798612407513c6d4d52024-04-16T07:05:54ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102021-03-01131485710.15330/cmp.13.1.48-573617On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$S. Pirzada0B.A. Rather1https://orcid.org/0000-0003-1381-0291T.A. Chishti2University of Kashmir, 190006, Srinagar, Kashmir, IndiaUniversity of Kashmir, 190006, Srinagar, IndiaUniversity of Kashmir, 190006, Srinagar, IndiaFor a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.https://journals.pnu.edu.ua/index.php/cmp/article/view/4143laplacian matrixdistance laplacian matrixcommutative ringzero divisor graph
spellingShingle S. Pirzada
B.A. Rather
T.A. Chishti
On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
Karpatsʹkì Matematičnì Publìkacìï
laplacian matrix
distance laplacian matrix
commutative ring
zero divisor graph
title On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
title_full On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
title_fullStr On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
title_full_unstemmed On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
title_short On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
title_sort on distance laplacian spectrum of zero divisor graphs of the ring mathbb z n
topic laplacian matrix
distance laplacian matrix
commutative ring
zero divisor graph
url https://journals.pnu.edu.ua/index.php/cmp/article/view/4143
work_keys_str_mv AT spirzada ondistancelaplacianspectrumofzerodivisorgraphsoftheringmathbbzn
AT barather ondistancelaplacianspectrumofzerodivisorgraphsoftheringmathbbzn
AT tachishti ondistancelaplacianspectrumofzerodivisorgraphsoftheringmathbbzn