The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
We investigated the effect of different sintering temperatures ranging from 200<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant=&qu...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/15/17/5830 |
_version_ | 1797494672383279104 |
---|---|
author | Fengshi Zheng Linshan Wang Rui Wang Jianwei Wang Shaoming Zhang Qiang Hu Limin Wang |
author_facet | Fengshi Zheng Linshan Wang Rui Wang Jianwei Wang Shaoming Zhang Qiang Hu Limin Wang |
author_sort | Fengshi Zheng |
collection | DOAJ |
description | We investigated the effect of different sintering temperatures ranging from 200<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> to 600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> on the porous properties and pore microstructure of large capillary pressure wicks made of carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces decreased and sintering necks grew large during sintering. In the contact-formation stage and the initial sintering stage (200–500<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the decrease in the roughness of particle surfaces played a decisive role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the growth of sintering necks dominated the process, however the hydraulic diameter was reduced. These results show that the maximum pore diameter first increased and then decreased in the same way as our evolution model. Permeability and capillary performance of the wicks first increased and then declined with increasing sintering temperature. We found the optimal sintering temperature to be 400<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>, at which point the wicks achieved the maximum pore diameter of 1.21 μm, a permeability of 1.77 × 10<sup>−14</sup> m<sup>2</sup>, and their highest capillary performance of 1.46 × 10<sup>−8</sup> m. |
first_indexed | 2024-03-10T01:37:42Z |
format | Article |
id | doaj.art-ad8f5540aeb54e92aa106f6f9e44a279 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T01:37:42Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-ad8f5540aeb54e92aa106f6f9e44a2792023-11-23T13:30:55ZengMDPI AGMaterials1996-19442022-08-011517583010.3390/ma15175830The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel PowderFengshi Zheng0Linshan Wang1Rui Wang2Jianwei Wang3Shaoming Zhang4Qiang Hu5Limin Wang6Metal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaChina Iron & Steel Research Institute Group, Beijing 100081, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaWe investigated the effect of different sintering temperatures ranging from 200<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> to 600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> on the porous properties and pore microstructure of large capillary pressure wicks made of carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces decreased and sintering necks grew large during sintering. In the contact-formation stage and the initial sintering stage (200–500<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the decrease in the roughness of particle surfaces played a decisive role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the growth of sintering necks dominated the process, however the hydraulic diameter was reduced. These results show that the maximum pore diameter first increased and then decreased in the same way as our evolution model. Permeability and capillary performance of the wicks first increased and then declined with increasing sintering temperature. We found the optimal sintering temperature to be 400<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>, at which point the wicks achieved the maximum pore diameter of 1.21 μm, a permeability of 1.77 × 10<sup>−14</sup> m<sup>2</sup>, and their highest capillary performance of 1.46 × 10<sup>−8</sup> m.https://www.mdpi.com/1996-1944/15/17/5830wickscarbonyl nickel powdersintering temperaturemaximum pore diameterpermeability |
spellingShingle | Fengshi Zheng Linshan Wang Rui Wang Jianwei Wang Shaoming Zhang Qiang Hu Limin Wang The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder Materials wicks carbonyl nickel powder sintering temperature maximum pore diameter permeability |
title | The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder |
title_full | The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder |
title_fullStr | The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder |
title_full_unstemmed | The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder |
title_short | The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder |
title_sort | pore microstructure evolution and porous properties of large capillary pressure wicks sintered with carbonyl nickel powder |
topic | wicks carbonyl nickel powder sintering temperature maximum pore diameter permeability |
url | https://www.mdpi.com/1996-1944/15/17/5830 |
work_keys_str_mv | AT fengshizheng theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT linshanwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT ruiwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT jianweiwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT shaomingzhang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT qianghu theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT liminwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT fengshizheng poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT linshanwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT ruiwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT jianweiwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT shaomingzhang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT qianghu poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder AT liminwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder |