The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder

We investigated the effect of different sintering temperatures ranging from 200<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant=&qu...

Full description

Bibliographic Details
Main Authors: Fengshi Zheng, Linshan Wang, Rui Wang, Jianwei Wang, Shaoming Zhang, Qiang Hu, Limin Wang
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/17/5830
_version_ 1797494672383279104
author Fengshi Zheng
Linshan Wang
Rui Wang
Jianwei Wang
Shaoming Zhang
Qiang Hu
Limin Wang
author_facet Fengshi Zheng
Linshan Wang
Rui Wang
Jianwei Wang
Shaoming Zhang
Qiang Hu
Limin Wang
author_sort Fengshi Zheng
collection DOAJ
description We investigated the effect of different sintering temperatures ranging from 200<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> to 600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> on the porous properties and pore microstructure of large capillary pressure wicks made of carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces decreased and sintering necks grew large during sintering. In the contact-formation stage and the initial sintering stage (200–500<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the decrease in the roughness of particle surfaces played a decisive role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the growth of sintering necks dominated the process, however the hydraulic diameter was reduced. These results show that the maximum pore diameter first increased and then decreased in the same way as our evolution model. Permeability and capillary performance of the wicks first increased and then declined with increasing sintering temperature. We found the optimal sintering temperature to be 400<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>, at which point the wicks achieved the maximum pore diameter of 1.21 μm, a permeability of 1.77 × 10<sup>−14</sup> m<sup>2</sup>, and their highest capillary performance of 1.46 × 10<sup>−8</sup> m.
first_indexed 2024-03-10T01:37:42Z
format Article
id doaj.art-ad8f5540aeb54e92aa106f6f9e44a279
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T01:37:42Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-ad8f5540aeb54e92aa106f6f9e44a2792023-11-23T13:30:55ZengMDPI AGMaterials1996-19442022-08-011517583010.3390/ma15175830The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel PowderFengshi Zheng0Linshan Wang1Rui Wang2Jianwei Wang3Shaoming Zhang4Qiang Hu5Limin Wang6Metal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaChina Iron & Steel Research Institute Group, Beijing 100081, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaMetal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, ChinaWe investigated the effect of different sintering temperatures ranging from 200<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> to 600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula> on the porous properties and pore microstructure of large capillary pressure wicks made of carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces decreased and sintering necks grew large during sintering. In the contact-formation stage and the initial sintering stage (200–500<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the decrease in the roughness of particle surfaces played a decisive role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>), the growth of sintering necks dominated the process, however the hydraulic diameter was reduced. These results show that the maximum pore diameter first increased and then decreased in the same way as our evolution model. Permeability and capillary performance of the wicks first increased and then declined with increasing sintering temperature. We found the optimal sintering temperature to be 400<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></mrow></semantics></math></inline-formula>, at which point the wicks achieved the maximum pore diameter of 1.21 μm, a permeability of 1.77 × 10<sup>−14</sup> m<sup>2</sup>, and their highest capillary performance of 1.46 × 10<sup>−8</sup> m.https://www.mdpi.com/1996-1944/15/17/5830wickscarbonyl nickel powdersintering temperaturemaximum pore diameterpermeability
spellingShingle Fengshi Zheng
Linshan Wang
Rui Wang
Jianwei Wang
Shaoming Zhang
Qiang Hu
Limin Wang
The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
Materials
wicks
carbonyl nickel powder
sintering temperature
maximum pore diameter
permeability
title The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
title_full The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
title_fullStr The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
title_full_unstemmed The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
title_short The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder
title_sort pore microstructure evolution and porous properties of large capillary pressure wicks sintered with carbonyl nickel powder
topic wicks
carbonyl nickel powder
sintering temperature
maximum pore diameter
permeability
url https://www.mdpi.com/1996-1944/15/17/5830
work_keys_str_mv AT fengshizheng theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT linshanwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT ruiwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT jianweiwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT shaomingzhang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT qianghu theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT liminwang theporemicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT fengshizheng poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT linshanwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT ruiwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT jianweiwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT shaomingzhang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT qianghu poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder
AT liminwang poremicrostructureevolutionandporouspropertiesoflargecapillarypressurewickssinteredwithcarbonylnickelpowder