On a positive solution for $(p,q)$-Laplace equation with Nonlinear
In the presentp aper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator $(p,q)$-Laplacian with indefinite weights. We also prove that in the case where $\mu>0$ and with $1<q<p<\infty$ the results a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2019-03-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/36661 |
Summary: | In the presentp aper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator $(p,q)$-Laplacian with indefinite weights. We also prove that in the case where $\mu>0$ and with $1<q<p<\infty$ the results are completely different from those for the usua lSteklov eigenvalue problem involving the $p$-Laplacian with indefinite weight, which is retrieved when $\mu=0$. Precisely, we show that when $\mu>0$ there exists an interval of principal eigenvalues for our Steklov eigenvalue problem. |
---|---|
ISSN: | 0037-8712 2175-1188 |