Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics

Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, densi...

Full description

Bibliographic Details
Main Authors: Michal Pavelka, Václav Klika, Miroslav Grmela
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/20/6/457
Description
Summary:Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction.
ISSN:1099-4300