The impact of solar radiation on polar mesospheric ice particle formation

<p>Mean temperatures in the polar summer mesopause can drop to 130&thinsp;K. The low temperatures in combination with water vapor mixing ratios of a few parts per million give rise to the formation of ice particles. These ice particles may be observed as polar mesospheric clouds. Mesosp...

Full description

Bibliographic Details
Main Authors: M. Nachbar, H. Wilms, D. Duft, T. Aylett, K. Kitajima, T. Majima, J. M. C. Plane, M. Rapp, T. Leisner
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/4311/2019/acp-19-4311-2019.pdf
_version_ 1819066381833863168
author M. Nachbar
H. Wilms
D. Duft
T. Aylett
K. Kitajima
T. Majima
J. M. C. Plane
M. Rapp
M. Rapp
T. Leisner
T. Leisner
author_facet M. Nachbar
H. Wilms
D. Duft
T. Aylett
K. Kitajima
T. Majima
J. M. C. Plane
M. Rapp
M. Rapp
T. Leisner
T. Leisner
author_sort M. Nachbar
collection DOAJ
description <p>Mean temperatures in the polar summer mesopause can drop to 130&thinsp;K. The low temperatures in combination with water vapor mixing ratios of a few parts per million give rise to the formation of ice particles. These ice particles may be observed as polar mesospheric clouds. Mesospheric ice cloud formation is believed to initiate heterogeneously on small aerosol particles (<i>r</i> &lt; 2 nm) composed of recondensed meteoric material, so-called meteoric smoke particles (MSPs). Recently, we investigated the ice activation and growth behavior of MSP analogues under realistic mesopause conditions. Based on these measurements we presented a new activation model which largely reduced the uncertainties in describing ice particle formation. However, this activation model neglected the possibility that MSPs heat up in the low-density mesopause due to absorption of solar and terrestrial irradiation. Radiative heating of the particles may severely reduce their ice formation ability. In this study we expose MSP analogues (Fe<sub>2</sub>O<sub>3</sub> and Fe<sub><i>x</i></sub>Si<sub>1 − <i>x</i></sub>O<sub>3</sub>) to realistic mesopause temperatures and water vapor concentrations and investigate particle warming under the influence of variable intensities of visible light (405, 488, and 660&thinsp;nm). We show that Mie theory calculations using refractive indices of bulk material from the literature combined with an equilibrium temperature model presented in this work predict the particle warming very well. Additionally, we confirm that the absorption efficiency increases with the iron content of the MSP material. We apply our findings to mesopause conditions and conclude that the impact of solar and terrestrial radiation on ice particle formation is significantly lower than previously assumed.</p>
first_indexed 2024-12-21T16:01:28Z
format Article
id doaj.art-adc7cff7a6cc480c85c84eba2bd0df98
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-21T16:01:28Z
publishDate 2019-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-adc7cff7a6cc480c85c84eba2bd0df982022-12-21T18:57:59ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-04-01194311432210.5194/acp-19-4311-2019The impact of solar radiation on polar mesospheric ice particle formationM. Nachbar0H. Wilms1D. Duft2T. Aylett3K. Kitajima4T. Majima5J. M. C. Plane6M. Rapp7M. Rapp8T. Leisner9T. Leisner10Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanySchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKDepartment of Nuclear Engineering, Kyoto University, Kyoto 615-8540, JapanDepartment of Nuclear Engineering, Kyoto University, Kyoto 615-8540, JapanSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMeteorologisches Institut München, Ludwig-Maximilians-Universität München, Munich, GermanyInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany<p>Mean temperatures in the polar summer mesopause can drop to 130&thinsp;K. The low temperatures in combination with water vapor mixing ratios of a few parts per million give rise to the formation of ice particles. These ice particles may be observed as polar mesospheric clouds. Mesospheric ice cloud formation is believed to initiate heterogeneously on small aerosol particles (<i>r</i> &lt; 2 nm) composed of recondensed meteoric material, so-called meteoric smoke particles (MSPs). Recently, we investigated the ice activation and growth behavior of MSP analogues under realistic mesopause conditions. Based on these measurements we presented a new activation model which largely reduced the uncertainties in describing ice particle formation. However, this activation model neglected the possibility that MSPs heat up in the low-density mesopause due to absorption of solar and terrestrial irradiation. Radiative heating of the particles may severely reduce their ice formation ability. In this study we expose MSP analogues (Fe<sub>2</sub>O<sub>3</sub> and Fe<sub><i>x</i></sub>Si<sub>1 − <i>x</i></sub>O<sub>3</sub>) to realistic mesopause temperatures and water vapor concentrations and investigate particle warming under the influence of variable intensities of visible light (405, 488, and 660&thinsp;nm). We show that Mie theory calculations using refractive indices of bulk material from the literature combined with an equilibrium temperature model presented in this work predict the particle warming very well. Additionally, we confirm that the absorption efficiency increases with the iron content of the MSP material. We apply our findings to mesopause conditions and conclude that the impact of solar and terrestrial radiation on ice particle formation is significantly lower than previously assumed.</p>https://www.atmos-chem-phys.net/19/4311/2019/acp-19-4311-2019.pdf
spellingShingle M. Nachbar
H. Wilms
D. Duft
T. Aylett
K. Kitajima
T. Majima
J. M. C. Plane
M. Rapp
M. Rapp
T. Leisner
T. Leisner
The impact of solar radiation on polar mesospheric ice particle formation
Atmospheric Chemistry and Physics
title The impact of solar radiation on polar mesospheric ice particle formation
title_full The impact of solar radiation on polar mesospheric ice particle formation
title_fullStr The impact of solar radiation on polar mesospheric ice particle formation
title_full_unstemmed The impact of solar radiation on polar mesospheric ice particle formation
title_short The impact of solar radiation on polar mesospheric ice particle formation
title_sort impact of solar radiation on polar mesospheric ice particle formation
url https://www.atmos-chem-phys.net/19/4311/2019/acp-19-4311-2019.pdf
work_keys_str_mv AT mnachbar theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT hwilms theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT dduft theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT taylett theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT kkitajima theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT tmajima theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT jmcplane theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT mrapp theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT mrapp theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT tleisner theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT tleisner theimpactofsolarradiationonpolarmesosphericiceparticleformation
AT mnachbar impactofsolarradiationonpolarmesosphericiceparticleformation
AT hwilms impactofsolarradiationonpolarmesosphericiceparticleformation
AT dduft impactofsolarradiationonpolarmesosphericiceparticleformation
AT taylett impactofsolarradiationonpolarmesosphericiceparticleformation
AT kkitajima impactofsolarradiationonpolarmesosphericiceparticleformation
AT tmajima impactofsolarradiationonpolarmesosphericiceparticleformation
AT jmcplane impactofsolarradiationonpolarmesosphericiceparticleformation
AT mrapp impactofsolarradiationonpolarmesosphericiceparticleformation
AT mrapp impactofsolarradiationonpolarmesosphericiceparticleformation
AT tleisner impactofsolarradiationonpolarmesosphericiceparticleformation
AT tleisner impactofsolarradiationonpolarmesosphericiceparticleformation