The impact of solar radiation on polar mesospheric ice particle formation
<p>Mean temperatures in the polar summer mesopause can drop to 130 K. The low temperatures in combination with water vapor mixing ratios of a few parts per million give rise to the formation of ice particles. These ice particles may be observed as polar mesospheric clouds. Mesosp...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/4311/2019/acp-19-4311-2019.pdf |
_version_ | 1819066381833863168 |
---|---|
author | M. Nachbar H. Wilms D. Duft T. Aylett K. Kitajima T. Majima J. M. C. Plane M. Rapp M. Rapp T. Leisner T. Leisner |
author_facet | M. Nachbar H. Wilms D. Duft T. Aylett K. Kitajima T. Majima J. M. C. Plane M. Rapp M. Rapp T. Leisner T. Leisner |
author_sort | M. Nachbar |
collection | DOAJ |
description | <p>Mean temperatures in the polar summer mesopause can drop to 130 K. The low
temperatures in combination with water vapor mixing ratios of a few parts per
million give rise to the formation of ice particles. These ice particles may
be observed as polar mesospheric clouds. Mesospheric ice cloud formation is
believed to initiate heterogeneously on small aerosol particles (<i>r</i> < 2 nm) composed of recondensed meteoric material, so-called meteoric
smoke particles (MSPs). Recently, we investigated the ice activation and
growth behavior of MSP analogues under realistic mesopause conditions. Based
on these measurements we presented a new activation model which largely
reduced the uncertainties in describing ice particle formation. However, this
activation model neglected the possibility that MSPs heat up in the
low-density mesopause due to absorption of solar and terrestrial irradiation.
Radiative heating of the particles may severely reduce their ice formation
ability. In this study we expose MSP analogues (Fe<sub>2</sub>O<sub>3</sub> and
Fe<sub><i>x</i></sub>Si<sub>1 − <i>x</i></sub>O<sub>3</sub>) to realistic mesopause
temperatures and water vapor concentrations and investigate particle warming
under the influence of variable intensities of visible light (405, 488, and
660 nm). We show that Mie theory calculations using refractive indices of
bulk material from the literature combined with an equilibrium temperature
model presented in this work predict the particle warming very well.
Additionally, we confirm that the absorption efficiency increases with the
iron content of the MSP material. We apply our findings to mesopause
conditions and conclude that the impact of solar and terrestrial radiation on
ice particle formation is significantly lower than previously assumed.</p> |
first_indexed | 2024-12-21T16:01:28Z |
format | Article |
id | doaj.art-adc7cff7a6cc480c85c84eba2bd0df98 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-21T16:01:28Z |
publishDate | 2019-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-adc7cff7a6cc480c85c84eba2bd0df982022-12-21T18:57:59ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-04-01194311432210.5194/acp-19-4311-2019The impact of solar radiation on polar mesospheric ice particle formationM. Nachbar0H. Wilms1D. Duft2T. Aylett3K. Kitajima4T. Majima5J. M. C. Plane6M. Rapp7M. Rapp8T. Leisner9T. Leisner10Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanySchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKDepartment of Nuclear Engineering, Kyoto University, Kyoto 615-8540, JapanDepartment of Nuclear Engineering, Kyoto University, Kyoto 615-8540, JapanSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMeteorologisches Institut München, Ludwig-Maximilians-Universität München, Munich, GermanyInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology – KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany<p>Mean temperatures in the polar summer mesopause can drop to 130 K. The low temperatures in combination with water vapor mixing ratios of a few parts per million give rise to the formation of ice particles. These ice particles may be observed as polar mesospheric clouds. Mesospheric ice cloud formation is believed to initiate heterogeneously on small aerosol particles (<i>r</i> < 2 nm) composed of recondensed meteoric material, so-called meteoric smoke particles (MSPs). Recently, we investigated the ice activation and growth behavior of MSP analogues under realistic mesopause conditions. Based on these measurements we presented a new activation model which largely reduced the uncertainties in describing ice particle formation. However, this activation model neglected the possibility that MSPs heat up in the low-density mesopause due to absorption of solar and terrestrial irradiation. Radiative heating of the particles may severely reduce their ice formation ability. In this study we expose MSP analogues (Fe<sub>2</sub>O<sub>3</sub> and Fe<sub><i>x</i></sub>Si<sub>1 − <i>x</i></sub>O<sub>3</sub>) to realistic mesopause temperatures and water vapor concentrations and investigate particle warming under the influence of variable intensities of visible light (405, 488, and 660 nm). We show that Mie theory calculations using refractive indices of bulk material from the literature combined with an equilibrium temperature model presented in this work predict the particle warming very well. Additionally, we confirm that the absorption efficiency increases with the iron content of the MSP material. We apply our findings to mesopause conditions and conclude that the impact of solar and terrestrial radiation on ice particle formation is significantly lower than previously assumed.</p>https://www.atmos-chem-phys.net/19/4311/2019/acp-19-4311-2019.pdf |
spellingShingle | M. Nachbar H. Wilms D. Duft T. Aylett K. Kitajima T. Majima J. M. C. Plane M. Rapp M. Rapp T. Leisner T. Leisner The impact of solar radiation on polar mesospheric ice particle formation Atmospheric Chemistry and Physics |
title | The impact of solar radiation on polar mesospheric ice particle formation |
title_full | The impact of solar radiation on polar mesospheric ice particle formation |
title_fullStr | The impact of solar radiation on polar mesospheric ice particle formation |
title_full_unstemmed | The impact of solar radiation on polar mesospheric ice particle formation |
title_short | The impact of solar radiation on polar mesospheric ice particle formation |
title_sort | impact of solar radiation on polar mesospheric ice particle formation |
url | https://www.atmos-chem-phys.net/19/4311/2019/acp-19-4311-2019.pdf |
work_keys_str_mv | AT mnachbar theimpactofsolarradiationonpolarmesosphericiceparticleformation AT hwilms theimpactofsolarradiationonpolarmesosphericiceparticleformation AT dduft theimpactofsolarradiationonpolarmesosphericiceparticleformation AT taylett theimpactofsolarradiationonpolarmesosphericiceparticleformation AT kkitajima theimpactofsolarradiationonpolarmesosphericiceparticleformation AT tmajima theimpactofsolarradiationonpolarmesosphericiceparticleformation AT jmcplane theimpactofsolarradiationonpolarmesosphericiceparticleformation AT mrapp theimpactofsolarradiationonpolarmesosphericiceparticleformation AT mrapp theimpactofsolarradiationonpolarmesosphericiceparticleformation AT tleisner theimpactofsolarradiationonpolarmesosphericiceparticleformation AT tleisner theimpactofsolarradiationonpolarmesosphericiceparticleformation AT mnachbar impactofsolarradiationonpolarmesosphericiceparticleformation AT hwilms impactofsolarradiationonpolarmesosphericiceparticleformation AT dduft impactofsolarradiationonpolarmesosphericiceparticleformation AT taylett impactofsolarradiationonpolarmesosphericiceparticleformation AT kkitajima impactofsolarradiationonpolarmesosphericiceparticleformation AT tmajima impactofsolarradiationonpolarmesosphericiceparticleformation AT jmcplane impactofsolarradiationonpolarmesosphericiceparticleformation AT mrapp impactofsolarradiationonpolarmesosphericiceparticleformation AT mrapp impactofsolarradiationonpolarmesosphericiceparticleformation AT tleisner impactofsolarradiationonpolarmesosphericiceparticleformation AT tleisner impactofsolarradiationonpolarmesosphericiceparticleformation |