Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics
Abstract This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400–1 Hz) and wide-band (MT: 360–0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Müre...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-08-01
|
Series: | Earth, Planets and Space |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s40623-017-0695-2 |
_version_ | 1818292338505547776 |
---|---|
author | Mustafa Karaş Sabri Bülent Tank Sinan Özaydın |
author_facet | Mustafa Karaş Sabri Bülent Tank Sinan Özaydın |
author_sort | Mustafa Karaş |
collection | DOAJ |
description | Abstract This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400–1 Hz) and wide-band (MT: 360–0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Mürefte Earthquake (M w 7.4). The AMT data were collected at twelve stations, closely spaced from north to south, to resolve the shallow resistivity structure to 1 km depth. Subsequently, 13 wide-band MT stations were arranged to form a grid enclosing the AMT profile to decipher the deeper structure. Three-dimensional inverse modeling indicates highly conductive anomalies representing fault zone conductors along the Ganos Fault. Subsidiary faults around the Ganos Fault, which are conductive structures with individual mechanically weak features, merge into a greater damage zone, creating a wide fluid-bearing environment. This damage zone is located on the southern side of the fault and defines an asymmetry around the main fault strand, which demonstrates distributed conduit behavior of fluid flow. Ophiolitic basement occurs as low-conductivity block beneath younger formations at a depth of 2 km, where the mechanically weak to strong transition occurs. Resistive structures on both sides of the fault beneath this transition suggest that the lack of seismicity might be related to the absence of fluid pathways in the seismogenic zone. Graphical Abstract . |
first_indexed | 2024-12-13T02:58:22Z |
format | Article |
id | doaj.art-addca84c91b4488bbf8b2c8c1267feea |
institution | Directory Open Access Journal |
issn | 1880-5981 |
language | English |
last_indexed | 2024-12-13T02:58:22Z |
publishDate | 2017-08-01 |
publisher | SpringerOpen |
record_format | Article |
series | Earth, Planets and Space |
spelling | doaj.art-addca84c91b4488bbf8b2c8c1267feea2022-12-22T00:01:54ZengSpringerOpenEarth, Planets and Space1880-59812017-08-0169111410.1186/s40623-017-0695-2Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotelluricsMustafa Karaş0Sabri Bülent Tank1Sinan Özaydın2Kandilli Observatory and Earthquake Research Institute, Boğaziçi UniversityKandilli Observatory and Earthquake Research Institute, Boğaziçi UniversityKandilli Observatory and Earthquake Research Institute, Boğaziçi UniversityAbstract This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400–1 Hz) and wide-band (MT: 360–0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Mürefte Earthquake (M w 7.4). The AMT data were collected at twelve stations, closely spaced from north to south, to resolve the shallow resistivity structure to 1 km depth. Subsequently, 13 wide-band MT stations were arranged to form a grid enclosing the AMT profile to decipher the deeper structure. Three-dimensional inverse modeling indicates highly conductive anomalies representing fault zone conductors along the Ganos Fault. Subsidiary faults around the Ganos Fault, which are conductive structures with individual mechanically weak features, merge into a greater damage zone, creating a wide fluid-bearing environment. This damage zone is located on the southern side of the fault and defines an asymmetry around the main fault strand, which demonstrates distributed conduit behavior of fluid flow. Ophiolitic basement occurs as low-conductivity block beneath younger formations at a depth of 2 km, where the mechanically weak to strong transition occurs. Resistive structures on both sides of the fault beneath this transition suggest that the lack of seismicity might be related to the absence of fluid pathways in the seismogenic zone. Graphical Abstract .http://link.springer.com/article/10.1186/s40623-017-0695-2FluidNorth Anatolian FaultGanos FaultFault zone conductorLocked faultElectrical resistivity |
spellingShingle | Mustafa Karaş Sabri Bülent Tank Sinan Özaydın Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics Earth, Planets and Space Fluid North Anatolian Fault Ganos Fault Fault zone conductor Locked fault Electrical resistivity |
title | Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics |
title_full | Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics |
title_fullStr | Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics |
title_full_unstemmed | Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics |
title_short | Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics |
title_sort | electrical conductivity of a locked fault investigation of the ganos segment of the north anatolian fault using three dimensional magnetotellurics |
topic | Fluid North Anatolian Fault Ganos Fault Fault zone conductor Locked fault Electrical resistivity |
url | http://link.springer.com/article/10.1186/s40623-017-0695-2 |
work_keys_str_mv | AT mustafakaras electricalconductivityofalockedfaultinvestigationoftheganossegmentofthenorthanatolianfaultusingthreedimensionalmagnetotellurics AT sabribulenttank electricalconductivityofalockedfaultinvestigationoftheganossegmentofthenorthanatolianfaultusingthreedimensionalmagnetotellurics AT sinanozaydın electricalconductivityofalockedfaultinvestigationoftheganossegmentofthenorthanatolianfaultusingthreedimensionalmagnetotellurics |