Comparative Study of Basic Time Domain Time-Delay Estimators for Locating Leaks in Pipelines

The article is devoted to a survey of the known basic Time-Delay Estimation (TDE) methods in the application for detecting fluid leaks in pipeline transport and distribution systems. In the paper, both active and passive estimation methods are considered with respect to the presented generalized cla...

Full description

Bibliographic Details
Main Authors: Vladimir A. Faerman, Valeriy S. Avramchuk
Format: Article
Language:English
Published: Springer 2020-03-01
Series:International Journal of Networked and Distributed Computing (IJNDC)
Subjects:
Online Access:https://www.atlantis-press.com/article/125936714/view
Description
Summary:The article is devoted to a survey of the known basic Time-Delay Estimation (TDE) methods in the application for detecting fluid leaks in pipeline transport and distribution systems. In the paper, both active and passive estimation methods are considered with respect to the presented generalized classification. However, the main attention is paid to the study of passive methods and their algorithmic implementation. Among the passive methods the Absolute Difference Function (ADF) minimizing algorithms, the Basic Cross-Correlation (BCC) algorithm, the adaptive Least Mean Square (LMS) filtering algorithm are implemented, investigated and compared using a mathematical model of a leak noise signal. All the algorithms are described and the results of the comparison are provided. The advantage of the LMS algorithm in processing the noisy signals is shown. However, its implementation requires choosing a convergence parameter. The necessity in choice of the additional parameter makes the LMS algorithm less practically applicable than the BCC algorithm. The ADF algorithm showed the lowest noise resistivity and can be considered as useful for signal detection, but not for TDE. Some conclusions regarding algorithms’ use for solving the problem of locating leaks are stated. In particular, correlation-based TDE algorithms, as generalized cross-correlation and time-frequency cross-correlation, appear to be the best choice for the implementation of leak detection software.
ISSN:2211-7946