Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application

Abstract A study on aerosols in the Brazilian subequatorial Amazon region, Tangará da Serra (TS) and Alta Floresta (AF) was conducted and compared to findings in an additional site with background characteristics (Manaus, AM). TS and AF counties suffer from intense biomass burning periods in the dry...

Full description

Bibliographic Details
Main Authors: ADRIANA GIODA, VINICIUS L. MATEUS, SANDRA S. HACON, ELIANE IGNOTTI, RUAN G.S. GOMES, MARCOS FELIPE S. PEDREIRA, JOSÉ MARCUS GODOY, RIVANILDO DALLACORT, ANA LÚCIA M. LOUREIRO, FERNANDO MORAIS, PAULO ARTAXO
Format: Article
Language:English
Published: Academia Brasileira de Ciências 2023-12-01
Series:Anais da Academia Brasileira de Ciências
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652023000501601&lng=en&tlng=en
_version_ 1797404327679098880
author ADRIANA GIODA
VINICIUS L. MATEUS
SANDRA S. HACON
ELIANE IGNOTTI
RUAN G.S. GOMES
MARCOS FELIPE S. PEDREIRA
JOSÉ MARCUS GODOY
RIVANILDO DALLACORT
ANA LÚCIA M. LOUREIRO
FERNANDO MORAIS
PAULO ARTAXO
author_facet ADRIANA GIODA
VINICIUS L. MATEUS
SANDRA S. HACON
ELIANE IGNOTTI
RUAN G.S. GOMES
MARCOS FELIPE S. PEDREIRA
JOSÉ MARCUS GODOY
RIVANILDO DALLACORT
ANA LÚCIA M. LOUREIRO
FERNANDO MORAIS
PAULO ARTAXO
author_sort ADRIANA GIODA
collection DOAJ
description Abstract A study on aerosols in the Brazilian subequatorial Amazon region, Tangará da Serra (TS) and Alta Floresta (AF) was conducted and compared to findings in an additional site with background characteristics (Manaus, AM). TS and AF counties suffer from intense biomass burning periods in the dry season, and it accounts for high levels of particles in the atmosphere. Chemical characterization of fine and coarse particulate matter (PM) was performed to quantify water-soluble ions (WSI) and black carbon (BC). The importance of explanatory variables was assessed using three machine learning techniques. Average concentrations of PM in AF and TS were similar (PM2.0, 17±10 µg m-3 (AF) and 16±11 µg m-3 (TS) and PM10-2.0, 13±5 µg m-3 (AF) and 11±7 µg m-3 (TS)), but higher than the background site. BC and SO4 2- were the prevalent components as they represented 27%–68% of particulates chemical composition. The combination of the machine learning techniques provided a further understanding of the pathways for PM concentration variability, and the results highlighted the influence of biomass burning for key sample groups and periods. PM2.0, BC, and most WSI presented higher concentrations in the dry season, providing further support for the influence of biomass burning.
first_indexed 2024-03-09T02:53:23Z
format Article
id doaj.art-adf1a15e7da04d38b950fb2a6020e44a
institution Directory Open Access Journal
issn 1678-2690
language English
last_indexed 2024-03-09T02:53:23Z
publishDate 2023-12-01
publisher Academia Brasileira de Ciências
record_format Article
series Anais da Academia Brasileira de Ciências
spelling doaj.art-adf1a15e7da04d38b950fb2a6020e44a2023-12-05T07:57:12ZengAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências1678-26902023-12-0195suppl 210.1590/0001-3765202320220932Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning applicationADRIANA GIODAhttps://orcid.org/0000-0002-5315-5650VINICIUS L. MATEUShttps://orcid.org/0000-0002-7732-6207SANDRA S. HACONhttps://orcid.org/0000-0002-8222-0992ELIANE IGNOTTIhttps://orcid.org/0000-0002-9743-1856RUAN G.S. GOMEShttps://orcid.org/0000-0002-1376-0995MARCOS FELIPE S. PEDREIRAhttps://orcid.org/0000-0002-5755-7438JOSÉ MARCUS GODOYhttps://orcid.org/0000-0001-6135-090XRIVANILDO DALLACORThttps://orcid.org/0000-0002-7634-8973ANA LÚCIA M. LOUREIROhttps://orcid.org/0009-0009-2773-1181FERNANDO MORAIShttps://orcid.org/0000-0002-7207-4450PAULO ARTAXOhttps://orcid.org/0000-0001-7754-3036Abstract A study on aerosols in the Brazilian subequatorial Amazon region, Tangará da Serra (TS) and Alta Floresta (AF) was conducted and compared to findings in an additional site with background characteristics (Manaus, AM). TS and AF counties suffer from intense biomass burning periods in the dry season, and it accounts for high levels of particles in the atmosphere. Chemical characterization of fine and coarse particulate matter (PM) was performed to quantify water-soluble ions (WSI) and black carbon (BC). The importance of explanatory variables was assessed using three machine learning techniques. Average concentrations of PM in AF and TS were similar (PM2.0, 17±10 µg m-3 (AF) and 16±11 µg m-3 (TS) and PM10-2.0, 13±5 µg m-3 (AF) and 11±7 µg m-3 (TS)), but higher than the background site. BC and SO4 2- were the prevalent components as they represented 27%–68% of particulates chemical composition. The combination of the machine learning techniques provided a further understanding of the pathways for PM concentration variability, and the results highlighted the influence of biomass burning for key sample groups and periods. PM2.0, BC, and most WSI presented higher concentrations in the dry season, providing further support for the influence of biomass burning.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652023000501601&lng=en&tlng=enbiomass burningCITparticulate matterrandom forestssecondary inorganic aerosol
spellingShingle ADRIANA GIODA
VINICIUS L. MATEUS
SANDRA S. HACON
ELIANE IGNOTTI
RUAN G.S. GOMES
MARCOS FELIPE S. PEDREIRA
JOSÉ MARCUS GODOY
RIVANILDO DALLACORT
ANA LÚCIA M. LOUREIRO
FERNANDO MORAIS
PAULO ARTAXO
Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application
Anais da Academia Brasileira de Ciências
biomass burning
CIT
particulate matter
random forests
secondary inorganic aerosol
title Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application
title_full Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application
title_fullStr Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application
title_full_unstemmed Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application
title_short Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application
title_sort assessing over decadal biomass burning influence on particulate matter composition in subequatorial amazon literature review remote sensing chemical speciation and machine learning application
topic biomass burning
CIT
particulate matter
random forests
secondary inorganic aerosol
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652023000501601&lng=en&tlng=en
work_keys_str_mv AT adrianagioda assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT viniciuslmateus assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT sandrashacon assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT elianeignotti assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT ruangsgomes assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT marcosfelipespedreira assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT josemarcusgodoy assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT rivanildodallacort assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT analuciamloureiro assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT fernandomorais assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication
AT pauloartaxo assessingoverdecadalbiomassburninginfluenceonparticulatemattercompositioninsubequatorialamazonliteraturereviewremotesensingchemicalspeciationandmachinelearningapplication