The Nonlinear Time Sequence Analysis in the Alpine-Himalayan Earthquake Zone

The characteristics of the earthquake activity in the Eurasian earthquake zone, which is the second largest earthquake zone in the world, was investigated by researchers. The earthquake activity of the Eurasian earthquake zone was analysed in various disciplines, such as earth dynamics, rock mechani...

Full description

Bibliographic Details
Main Authors: Chen Jiemin, Yan Zelin, Xu Linfeng, Liu Zhixin, Liu Yan, Tian Jiawei
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/75/e3sconf_edep2021_02001.pdf
Description
Summary:The characteristics of the earthquake activity in the Eurasian earthquake zone, which is the second largest earthquake zone in the world, was investigated by researchers. The earthquake activity of the Eurasian earthquake zone was analysed in various disciplines, such as earth dynamics, rock mechanics, geology and tectonics. The emergence of fractal theory provided a new direction in exploring the characteristics of the earthquake activity in the Eurasian earthquake zone. This study processed the data on the earthquake activity in the Eurasian earthquake zone by self-similarity method and scaled invariant feature test and used the rescaled range analysis method to analyse the nonlinear time series fractal characteristics of the earthquake activity in the Eurasian earthquake zone. Results show that the time series of earthquake activity in the study area is not an independent Poisson process, which exhibits the characteristics of scale invariance and long-range correlation. Approximately 80% of the H values of the earthquake activity iteratively increase and decrease for moderate earthquakes, which is mainly concentrated during the increasing stage. The time difference of the H value between the two-neighbouring earthquake shows that the H value fluctuates in the active earthquake region and is stationary in the relatively stable region. Strong earthquakes will likely occur in the next few years because the H value fluctuates.
ISSN:2267-1242