Effects of summer pruning on the growth and photosynthetic characteristics of pepper (Capsicum annuum L.)

The objective of the study is to investigate the mechanism by which summer pruning enhances the growth of pepper plants, as indicated by growth and fruit appearance indicators, photosynthetic rate and gas exchange parameters, rapid light response and induction kinetics curves and the related chloro...

Full description

Bibliographic Details
Main Authors: Ying Peng, Hui Tong, Wuping Yin, Ye Yuan, Zuhua Yuan
Format: Article
Language:English
Published: University of Life Sciences in Lublin - Publishing House 2024-02-01
Series:Acta Scientiarum Polonorum: Hortorum Cultus
Subjects:
Online Access:https://czasopisma.up.lublin.pl/index.php/asphc/article/view/5275
Description
Summary:The objective of the study is to investigate the mechanism by which summer pruning enhances the growth of pepper plants, as indicated by growth and fruit appearance indicators, photosynthetic rate and gas exchange parameters, rapid light response and induction kinetics curves and the related chlorophyll fluorescence parameters. The results indicated that the leaf growth rate, the individual pepper fruit weight, and the fruit longitudinal and cross diameters of the pruned group were significantly higher than those of the control. The stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of the pruned group were significantly higher than those of the control. The initial slope of the rapid light response curve, which represents light energy utilisation efficiency (α), the maximum electron transfer rate (Jmax) and saturated light intensity (PARsat) were all higher in the summer pruning group than in the control group. The F0 of the pruned group decreased by 16.83%, Fv/F0 increased by 23.69%, PIabs increased by 58.33%, and DIo/RC decreased by 22.09% compared to the control group. In summary, summer pruning significantly improves the leaf growth rate and fruit appearance quality of pepper, effectively promotes the photosynthesis of functional leaves, and reduces the degree of stress under adverse environmental conditions.
ISSN:1644-0692
2545-1405