Summary: | The management and proper use of the Urban Public Transport Systems (UPTS) constitutes a critical field that has not been investigated in accordance to its relevance and urgent idiosyncrasy within the Smart Cities realm. Swarm Intelligence is a very promising paradigm to deal with such complex and dynamic systems. It presents robust, scalable, and self-organized behavior to deal with dynamic and fast changing systems. The intelligence of cities can be modelled as a swarm of digital telecommunication networks (the nerves), ubiquitously embedded intelligence, sensors and tags, and software. In this paper, a new approach based on the use of the Natural Computing paradigm and Collective Computation is shown, more concretely taking advantage of an Ant Colony Optimization algorithm variation and Fireworks algorithms to build a system that makes the complete control of the UPTS a tangible reality.
|